On an N x N board, the numbers from 1 to N*Nare written boustrophedonically starting from the bottom left of the board, and alternating direction each row.  For example, for a 6 x 6 board, the numbers are written as follows: You start on square 1 of…
On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the bottom left of the board, and alternating direction each row.  For example, for a 6 x 6 board, the numbers are written as follows: You start on square 1 of…
题目如下: 解题思路:天坑题,不在于题目多难,而是要理解题意.题目中有两点要特别注意,一是“You choose a destination square S with number x+1, x+2, x+3, x+4, x+5, or x+6, provided this number is <= N*N.” 这里最大可以移动的x+6中的6真的就是数字6啊,不是例子中的N=6的6,可以理解成是掷骰子.二是“Note that you only take a snake or ladder a…
1151 - Snakes and Ladders Time Limit: 2 second(s)    Memory Limit: 32 MB 'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common that it would be tough to find a person who hasn't played it. But those who ha…
Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,tp[i]表示从i传送到tp[i]. 1和100不会有传送,一个格子也不会有两种传送.问走到100的期望值. \(dp[i]\)表示从格子i走出去的期望次数 分两种情况考虑 格子不可以传送 \(dp[i] = \frac{1}{6} \cdot \sum_{j=1}^{k}dp[i+j] + \…
题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB 'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common th…
Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume the following rules: A move is guaranteed to be valid and is placed on an empty block.Once a winning condition is reached, no more moves is allowed.A player…
A Tic-Tac-Toe board is given as a string array board. Return True if and only if it is possible to reach this board position during the course of a valid tic-tac-toe game. The board is a 3 x 3 array, and consists of characters " ", "X"…
思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp[i]=1+(∑dp[p[i+j]])/6 再就是注意当i+j>100时,停在原地不变. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #includ…
题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且可能性一样),掷多少走多少,目的地超出100重掷,问你走到100所需掷骰子的期望. 思路:概率DP肯定的,但是会往前传送就很难直接算.用DP[i]代表从i走到100的期望. 那么如果i没有传送阵,则有:DP[i] = 1 / 6 * sum(DP[i + j]) + 1,1<= j <= 6,如果…