TfidfVectorizer函数主要用于,将文档(句子)等通过 tf-idf值来进行表示,也就是用一个tf-idf值的矩阵来表示文档(句子也可). from sklearn.feature_extraction.text import TfidfVectorizer 1. 其函数源代码很长,这里只展示: class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a…
CountVectorizer: CountVectorizer可以将文本文档集合转换为token计数矩阵.(token可以理解成词) 此实现通过使用scipy.sparse.csr_matrix产生了计数的稀疏表示. 如果不提供一个先验字典,并且不使用进行某种特征选择的分析器,那么特征的数量将与通过分析数据得到的词汇表的大小一致. 参数: input: 默认content 可选 filename.file.content 如果是filename,传给fit的参数必须是文件名列表 如果是file…
""" 理解sklearn中的CountVectorizer和TfidfVectorizer """ from collections import Counter import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer sentences = ["there is a dog dog", &…
sklearn.feature_extraction.FeatureHasher(n_features=1048576, input_type="dict", dtype=<class 'numpy.float64'>, alternate_sign=True, non_negative=False): 特征散列化的实现类. 此类将符号特性名称(字符串)的序列转换为scipy.sparse矩阵,使用哈希函数计算与名称对应的矩阵列.使用的散列函数是带符号的32位版本的Murm…
sklearn.featture_extraction.DictVectorizer: 将特征与值的映射字典组成的列表转换成向量. DictVectorizer通过使用scikit-learn的estimators,将特征名称与特征值组成的映射字典构成的列表转换成Numpy数组或者Scipy.sparse矩阵. 当特征的值是字符串时,这个转换器将进行一个二进制One-hot编码.One-hot编码是将特征所有可能的字符串值构造成布尔型值.例如: 特征f有一个值ham,一个值spam,转换后会变成…
sklearn.feature_extraction.DictVectorizer:将字典组成的列表转换成向量.(将特征与值的映射字典组成的列表转换成向量) 1. 特征矩阵行代表数据,列代表特征,0表示该数据没有该特征 from sklearn.feature_extraction import DictVectorizer # 设置sparse=False获得numpy ndarray形式的结果 v = DictVectorizer(sparse=False) D = [{'foo':1, '…
在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌.分割的功能.但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效. 一个简单的例子如下: 1 import numpy as np 2 from sklearn.model_selection import StratifiedShuffleSplit 3 4 l4 = np.array([[1,2],[3,4],[1,4],[3,5]]) 5 l5 = np.array([0,1,…
敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: # 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = Standard…
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script src="https://cdn.bootcss.com/jquery/1.10.2/jquery.min.js"></script> <script type="text/javascript"> $(function(){ $("…
tager='工作台' element=WebDriverWait(self.dr,15,0.1).until( eval("lambda x: x."+'find_element_by_android_uiautomator(\'text(\\\"'+tager+'\\\")\')') )…