LOJ 前置知识:任意长度NTT 普通NTT只能做\(2^k\)的循环卷积,尝试扩展成长度为\(n\)的循环卷积,保证模意义下\(\omega_n\)存在. 不管怎样还是要算点值.推式子: \[ \begin{align*} X_i&=\sum_{j=0}^{n-1}x_j\omega_n^{ij}\\ &=\sum_{j=0}^{n-1}x_j\omega_n^{{i+j\choose2}-{i\choose 2}-{j\choose 2}}\\ &=\omega_n^{-{i\…
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\le L,1\le v\le n)\).这张图不是简单图,对于任意两个顶点 \((u_1,v_1),(u_2,v_2)\),如果 \(u_1<u_2\),则从 \((u_1,v_1)\) 到 \((u_2,v_2)\) 一共有 \(w(v_1,v_2)\) 条不同的边,如果 \(u_1\ge u_2\…
题意 有一个\((L+1)*n\) 的网格图,初始时白兔在\((0,X)\) , 每次可以向横坐标递增,纵坐标随意的位置移动,两个位置之间的路径条数只取决于纵坐标,用\(w(i,j)\) 表示,如果要求白兔停下的点纵坐标为\(Y\) 依次输出移动的步数对\(k\) 取模为 $0 - k -1 $的方案数: \(p\)为质数且$10^8 \lt p \lt 2^{30} , 1 \le n \le 3 , 1 \le x , y \le n , 0 \le w(i,j) \lt p , 1 \le…
题目:https://loj.ac/problem/3058 先考虑 n=1 怎么做.令 a 表示输入的 w[1][1] . \( ans_t = \sum\limits_{i=0}^{L}C_{L}^{i} a^i [ k|(i-t) ] \) \(= \frac{1}{k}\sum\limits_{i=0}^{L}C_{L}^{i} a^i \sum\limits_{j=0}^{k-1} w_{k}^{j*(i-t)} \) \(= \frac{1}{k}\sum\limits_{j=0}^…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a, b)\)(其中 \(a < b\))来表示一条端点分别为顶点 \(a, b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且…
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 \(x\) 欧拉或者 \(x\) 木大表示有 \(x\) 个欧拉或者木大. 为了简化内容我们现在用字母表示喊出的话. 我们用数字和字母来表示一个串,例如:2 a 3 b 表示的串就是 aabbb. 一开始漫画中什么话都没有,接下来你需要依次实现 \(n\) 个操作,总共只有 \(2\) 种操作:…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
[LOJ3054] 「HNOI2019」鱼 链接 链接 题解 首先想 \(O(n^3)\) 的暴力,不难发现枚举 \(A\) 和 \(D\) 后, \((B,C)\) 和 \((E,F)\) 两组点互相之间没有影响,因此可以分开计算,对于任意一组点,枚举其中一个点,另一个点即为枚举的点关于 \(AD\) 的对称点,暴力统计即可 然后首先考虑 \((E,F)\) 一组点.由于有 \(\angle ADE, \angle ADF \gt 90 \degree\) 的限制,那么 \(E,F\) 两个点…
目录 description solution accepted code details description 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3,\dots,n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a,b)\)(其中 \(a<b\))来表示一条端点分别为顶点 \(a,b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选…