Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步讲Gan的所有领域应用 ----------------------------------------------------------------------------------- 上一篇说到最近有人关于encoder给出了更加直观的解释: 从另一个角度理解,传统的A是我们希望的map,两…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步讲Gan的所有领域应用 ----------------------------------------------------------------------------------- 1: 下图GAN可以学到不同的字体,并且在字体之间进行不同的变换 2 下图可以用简笔画可以用GAN帮助生成想…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看上两篇 https://www.cnblogs.com/Libo-Master/p/11167804.html https://www.cnblogs.com/Libo-Master/p/11169198.html ------------------------------------------…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看上两篇 https://www.cnblogs.com/Libo-Master/p/11167804.html https://www.cnblogs.com/Libo-Master/p/11169198.html 图像应用 https://www.cnblogs.com/Libo-Master/p…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
  生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即生成器 generator 与判别器 discriminator.生成器主要用来学习真实图像分布从而让自身生成的图像更加真实,以骗过判别器.判别器则需要对接收的图片进行真假判别.在整个过程中,生成器努力地让生成的图像更加真实,而判别器则努力地去识别出图像的真假,这个过程相当于一个二人博弈,随着时间的…
Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouget-Abadie, M. Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua BengioSources:2014, NIPSOther:26700 Citations, 41 ReferencesCode…
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural Networks have made great progress. They now recognize images and voice at levels comparable to humans. They are also able to understand natural langua…
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签.我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入是N类当中的一个.在训练的时候,D被用于预测输入是属于 N+1的哪一个,这个+1是对应了G的输出.这种方法可以用于创造更加有效的分类器,并且可以比普通的GAN 产生更加高质量的样本. 将产生式模型应用于半监督学习并非一个新颖…
前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 <Self-Attention Generative Adversarial Networks>   https://arxiv.org/pdf/1805.08318v1.pdf 里边关键的还是注意力机制,又花了一个小时理解了下,感觉这种方式能够带来另一种视野的扩大,其中cnn是通过不断卷积扩大视野. 而…