postgresql----Btree索引】的更多相关文章

文中附图参考至<PostgreSQL数据库内核分析> (一)概念描述 B+树是一种索引数据结构,其一个特征在于非叶子节点用于描述索引,而叶子节点指向具体的数据存储位置.在PostgreSQL中,存在结构相似的BTree索引,该数据结构最先引用于<Effiicient Locking for Concurrent Operations on B-Trees>论文,一个新特征在于,引入了“High Key”(下述HK)用于描述当前节点子节点的最大值.如下图所示: 其中K1代表一个HK,…
在关系型数据库调优中,查询语句涉及到的索引类型是不得不考虑的一个问题.不同的类型的索引可能会适用不同类型的业务场景.这里我们所说的索引类型指的是访问方法(Access Method),至于从其他维度区分索引(Index)这里暂不作考虑. PostGreSQL数据库默认的索引访问方法是btree,其他的数据库如Oracle默认也是btree.那么btree到底是何方神圣呢?如果想要深入理解btree的运行原理,需要了解一下数据结构相关的知识,特别是树形数据结构.btree运用了b+ 树数据结构,其…
1. 索引的特性 1.1 加快条件的检索的特性 当表数据量越来越大时查询速度会下降,在表的条件字段上使用索引,快速定位到可能满足条件的记录,不需要遍历所有记录. create table t(id int, info text); ,),,); create table t1 as select * from t; create table t2 as select * from t; create index ind_t2_id on t2(id); lottu=# analyze t1; A…
没有索引时mysql是如何查询到数据的 索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取10^4个页面,如果这10^4个页面在磁盘上随机分布,需要进行10^4次I/O,假设磁盘每次I/O时间为10ms(忽略数据传输时间),则总共需要100s(但实际上要好很多很多).如果对之建立B-Tree索…
1. 索引的特性 1.1 加快条件的检索的特性 当表数据量越来越大时查询速度会下降,在表的条件字段上使用索引,快速定位到可能满足条件的记录,不需要遍历所有记录. create table t(id int, info text); insert into t select generate_series(1,10000),'lottu'||generate_series(1,10000); create table t1 as select * from t; create table t2 a…
转自博客http://www.amogoo.com/article/4 前提1,为了与时俱进,文中数据库环境为MySQL5.6版本2,为了通用,更为了避免造数据的痛苦,文中所涉及表.数据,均来自于MySQL官网提供的示例库employees,可通过 https://launchpad.net/test-db/employees-db-1/1.0.6 自行下载. 基本概念Binary search(二分查找法,折半查找法):是一种在有序数组中查找某一特定元素的搜索算法.搜素过程从数组的中间元素开始…
Btree 索引 索引是帮助数据库高效获取数据的一种数据结构,通过提取句子主干,就可以得到索引的本质. m-way查找树 如果想了解Btree,需要首先了解m-way数据结构. m-way查找树是是一种树形的存储结构,主要特点如下, 每个节点存储的key数量小于m个 每个节点的度小于等于m 节点key按顺序排序 子树key值要完全小于.大于或介于父节点之间 例如, 3-way如图,m为3,那么每个节点最多拥有为2个(m-1), 待索引元素列表为: [5, 7, 12, 6, 8, 3, 4] B…
在谈论数据库性能优化的时候,通常都会提到“索引”,但很多人其实并没有真正理解索引,也没有搞清楚索引为什么就能加快检索速度,以至于在实践中并不能很好的应用索引.事实上,索引是一种廉价而且十分有效的优化手段,设计优良的索引对查询性能提升确实能起到立竿见影的效果. 相信很多读者,都了解和使用过索引,可能也看过或者听过”新华字典“.”图书馆“之类比较通俗描述,但是对索引的存储结构和本质任然还比较迷茫. 有数据结构和算法基础的读者,应该都学过或者写过“顺序查找,二分查找(折半)查找,二叉树查找”这几种很经…
Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引. 可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以…
来源一 Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引. 可 能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端…