J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenp…
1.当n,m都很小的时候可以利用杨辉三角直接求. C(n,m)=C(n-1,m)+C(n-1,m-1): 2.n和m较大,但是p为素数的时候 Lucas定理是用来求 c(n,m) mod p,p为素数的值. C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p 求上式的时候,Lucas递归出口为m=0时返回1 求C(n%p, m%p)%p的时候,此处写成C(n, m)%p(p是素数,n和m均小于p…
转载https://www.cnblogs.com/fzl194/p/9095177.html 组合数取模方法总结(Lucas定理介绍) 1.当n,m都很小的时候可以利用杨辉三角直接求. C(n,m)=C(n-1,m)+C(n-1,m-1): ; ll fac[maxn];//阶乘打表 void init(ll p)//此处的p应该小于1e5,这样Lucas定理才适用 { fac[] = ; ; i <= p; i++) fac[i] = fac[i - ] * i % p; } ll pow(…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其中经过(x,y)的方案数,也就是(1,1)到(x,y)的方案乘上(x,y)到(n,m)的方案,为 C((x−1)+(y−1),x−1)×C((n−x)+(m−y),n−x) 于是答案就是下式取模 C(m+n−2,n−1)−C(x+y−2,x−1)×C(n−x+m−y,n−x) m和n大到10的五次方…
这个题相当于求从1-n的递增方案数,为C(2*n-1,n); 取模要用lucas定理,附上代码: #include<bits/stdc++.h> using namespace std; typedef long long LL; LL mod=1000000007; LL quick_mod(LL a,LL b){ LL ans=1%mod; while(b){ if(b&1){ ans=ans*a%mod; b--; } b>>=1; a=a*a%mod; } retu…
题面 传送门:UOJ Solution 这题的数位DP好蛋疼啊qwq 好吧,我们说回正题. 首先,我们先回忆一下LUCAS定理: \(C_n^m \equiv C_{n/p}^{m/p} \times C_{n\%p}^{m\%p} (\%p)\) 我们仔细观察这个定理,就可以发现一个事实:LUCAS定理本质上是在对n,m两个数做K进制下的数位分离 所以说,LUCAS定理我们可以这样表示: \(C_n^m \equiv \prod C_{a_i}^{b_i}\) (ai与bi为K进制拆分后的两个…
3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] Description 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最…
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这一位没卡/卡了限制,的组合数之积,转移显然. WA 8发,都想抽死自己. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) typedef long long…
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数) 由于p较大,不可以打表,直接Lucas求解 #include<iostream> using namespace std; typedef long long…