YOLO_Online 将深度学习最火的目标检测做成在线服务 第一次接触 YOLO 这个目标检测项目的时候,我就在想,怎么样能够封装一下让普通人也能够体验深度学习最火的目标检测项目,不需要关注技术细节,不需要装很多软件.只需要网页就能体验呢. 在踩了很多坑之后,终于实现了. 效果: 1.上传文件 2.选择了一张很多狗的图片 3.YOLO 一下 技术实现 web 用了 Django 来做界面,就是上传文件,保存文件这个功能. YOLO 的实现用的是 keras-yolo3,直接导入yolo 官方的…
小目标难检测原因 主要原因 (1)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,导致小目标在特征图的尺寸基本上只有个位数的像素大小,导致设计的目标检测分类器对小目标的分类效果差. (2)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,如果分类和回归操作在经过几层下采样处理的 特征层进行,小目标特征的感受野映射回原图将可能大于小目标在原图的尺寸,造成检测…
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记). RCNN (论文:Rich feature hierarchies for accurate object detection and semantic segment…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向 待办 目标检测问题时间线 特征金字塔加滑窗 对象框推荐 回归算法回归对象框 多尺度检测 BBOX 回归发展 NMS技术发展 困难样本挖掘技术发展--样本不均衡问题 https://zhuanlan.zhihu.com/p/98756890 目标检测的加速方式 https://zhuanlan.zhihu.com/p/98756890 最新进展 1.更好的引擎 DenseNet,在残差网…
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发…
Faster R-CNN Fast-RCNN基本实现端对端(除了proposal阶段外),下一步自然就是要把proposal阶段也用CNN实现(放到GPU上).这就出现了Faster-RCNN,一个完全end-to-end的CNN对象检测模型. 论文提出:网络中的各个卷积层特征(feature map)也可以用来预测类别相关的region proposal(不需要事先执行诸如selective search之类的算法),但是如果简单的在前面增加一个专门提取proposal的网络又显得不够优雅,所…
1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了得到效果最好的那一个,需要使用一定的过滤技术把多余的框过滤掉.NMS应运而生. 现,假设有一个候选BOXES的集合B和其对应的SCORES集合S: 1.找出分数最高的那个框M: 2.将M对应的BOX从B中删除: 3.将删除的BOX添加到集合D中: 4.从B中删除与M对应的BOX重叠区域大于阈值Nt的…
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.也可以理解为只取置信度最高的一个识别结果. 举例:  如图所示,现在识别出了3个人脸,但该三个人脸其实都为同一个目标,只是位置不同,置信度也不一样. 这时候,我们想要是置信度最高的"0.97"的检测结果,以及位置信息. 那么,我们就可以采用NMS的方式,来得到我们想要的最后的结果. 原理: 对于Bounding Box的列表B及其对应的置信度S,采用下面的…
非极大值抑制(Non-max suppression) 到目前为止你们学到的对象检测中的一个问题是,你的算法可能对同一个对象做出多次检测,所以算法不是对某个对象检测出一次,而是检测出多次.非极大值抑制这个方法可以确保你的算法对每个对象只检测一次. 来,我们吃一颗栗子: 假设你需要在这张图片里检测行人和汽车,你可能会在上面放个19×19网格,理论上这辆车只有一个中点,所以它应该只被分配到一个格子里,左边的车子也只有一个中点,所以理论上应该只有一个格子做出有车的预测.   实践中当你运行对象分类和定…