荒岛野人Savage】的更多相关文章

拓展欧几里得入门题 两个野人若要走到同一个洞穴,设他们走了x步,则p[i]*x+c[i]≡p[j]*x+c[j](mod ans),ans即答案: 移项得到(p[i]-p[j])*X+ansY=c[j]-c[i]; 即aX+bY+=C的形式,枚举ans,n^2的枚举每一个野人,用ex_gcd求得最小解,看X是否在他们的生命时间内. /************************************************************** Problem: 1407 User:…
P2421 [NOI2002]荒岛野人 洞穴数不超过1e6 ---> 枚举 判断每个野人两两之间是否发生冲突:exgcd 假设有$m$个洞穴,某两人(设为1,2)在$t$时刻发生冲突 那么我们可以列出方程 $c_{1}+p_{1}t\equiv c_{2}+p_{2}t (mod\quad m)$ 移项一下:$(p_{1}-p_{2})t\equiv c_{2}-c_{1} (mod\quad m)$ 去掉$(mod m)$,得$(p_{1}-p_{2})t-mx=c_{2}-c_{1} $ 这…
洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数解 \(0<x\neq y\leq 2\cdot 10^9,0<n,m\leq 2\cdot 10^9,0<l\leq 2.1\cdot 10^9\) 做一下变形: \[x-y\equiv a(n-m) \pmod l \] 设\(w=x-y,r=n-m\),则 \[ar\equiv w \…
题目背景 原 A-B数对(增强版)参见P1102 题目描述 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来. 每个野人i有一个寿命值Li,即生存的年数. 下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况.三个野人初始的洞穴编号依次为1,2,3:每年要走过的洞穴数依次为3,7,2:寿命值依次为4,3,1. 奇怪的是,虽然野人有很多,…
最近上课时提到的一道扩欧水题.还是很可做的. 我们首先注意到,如果一个数\(s\)是符合要求的,那么那些比它大(or 小)的数不一定符合要求. 因此说,答案没有单调性,因此不能二分. 然后题目中也提到\(s\le 10^6\),因此我们直接从小到大枚举\(s\),然后考虑如何判断. 由于两个野人在有生之年不会相遇,因此只有两种情况: 这两个野人永远不会相遇. 这两个野人相遇的时候他们其中的一个(或两个)已经死了. 在处理的时候我们把\(c_i\)都减\(1\)方便处理. 我们接着枚举两个人\(i…
人生第一次做NOI的题祭!!! 大概是NOI最简单的一道题 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来. 每个野人i有一个寿命值Li,即生存的年数. 下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况.三个野人初始的洞穴编号依次为1,2,3:每年要走过的洞穴数依次为3,7,2:寿命值依次为4,3,1. (图片就不考了) 我们发现…
[题解] 可以枚举m 那么任意两个野人之间有 c[i]+x*p[i]=c[j]+x*p[j] (mod m)  无解,或 x 的最小值<=min(l[i] , l[j]) 化为丢番图方程:(p[i]-p[j])*x+m*y=c[j]-c[i] 用扩展欧几里得搞就行了. #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath>…
洛谷P2421:https://www.luogu.org/problemnew/show/P2421 思路 从洞的最大编号开始增大枚举答案 对于每一个枚举的ans要满足Ci+k*Pi≡Cj+k*Pj(mod ans)的k ,都要k>min(L[i],L[j])  因为这个ans一定要满足在一个野人死之前可以满足条件 根据上式可以推出Ci+k*Pi=Cj+k*Pj+m*ans   移项得k*(Pi-Pj)+m*ans=Cj-Ci 即可用Exgcd求解此式子 代码 #include<iostre…
题目描述 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来. 每个野人i有一个寿命值Li,即生存的年数. 下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况.三个野人初始的洞穴编号依次为1,2,3:每年要走过的洞穴数依次为3,7,2:寿命值依次为4,3,1. 奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个山洞中,使得…
题目:http://codevs.cn/problem/1747/ 对于一个环,我们经常用取余来表示它走过若干圈后的位置 那么第 i 个野人第 x 年时所在的位置可表示为:(c[i]+p[i]*x)%m (若结果为 0 则变为 m) 若两个野人不产生冲突,则在它们俩最小的寿命之内,每一年的位置都会不同 可列出不等式,对于第 i 和第 j 号野人,(c[i]+p[i]*x)%m!=(c[j]+p[j]*x)%m 但是不等式十分不好解,则把它转化为等式,并做变换 (c[i]+p[i]*x)%m=(c…