题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation f…
过程 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个原则,经过N轮计算就能得到每一个节点的最短距离. 第一轮,可以计算出,2.3.4.5.6到原点1的距离分别为:[7, 9, -1, -1, 14].-1表示无穷大.取其中最小的,为7,即可以确定1的最短路径为0,2为下一轮的前驱节点.同时确定2节点的最短路径为7,路线:1->2. 第二轮,取2节点为前驱节点,按照前驱节点的…
python利用kruskal算法求解最短路径的问题,修改参数后可以直接使用 def kruskal(): """ kruskal 算法 """ dimensional = get_array(9999) # 获取数组 node_num = len(dimensional) res = [] count = 0 # 获取节点值 for i in range(node_num): for j in range(i): if 0 < dimen…
HMM:隐式马尔可夫链   HMM的典型介绍就是这个模型是一个五元组: 观测序列(observations):实际观测到的现象序列 隐含状态(states):所有的可能的隐含状态 初始概率(start_probability):每个隐含状态的初始概率 转移概率(transition_probability):从一个隐含状态转移到另一个隐含状态的概率 发射概率(emission_probability):某种隐含状态产生某种观测现象的概率 HMM模型可以用来解决三种问题: 参数(StatusSet…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
参考博客链接:https://www.cnblogs.com/kex1n/p/4178782.html Dijkstra是常用的全局路径规划算法,其本质上是一个最短路径寻优算法.算法的详细介绍参考上述链接. 本文与参考博文相比,主要有如下两个不同: 1.开发语言换成了matlab,代码部分稍作改动就可以实时运行在控制器上: 2.求取了从起点开始到达每一个顶点的最短路径所经历的顶点. matlab代码:包含测试数据 %参考链接https://www.cnblogs.com/kex1n/p/4178…
# 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后closed表中的节点很多,如何找出最优的一条路径 # 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路 # 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点 # 参考<无人驾驶概论>.<基于A*算法的移动机器人路径规划&g…
路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大.基于随机采样技术的PRM法可以有效解决高维空间和复杂约束中的路径规划问题. PRM是一种基于图搜索的方法,它将连续空间转换成离散空间,再利用A*等搜索算法在路线图上寻找路径,以提高搜索效率.这种方法能用相对少的随机采样点来找到…
基于Dijsktra算法的最短路径求解 发布时间: 2018年11月26日 10:14   时间限制: 1000ms   内存限制: 128M 有趣的最短路...火候欠佳,目前还很难快速盲打出来,需继续练习. 描述 一张地图包括n个城市,假设城市间有m条路径(有向图),每条路径的长度已知.给定地图的一个起点城市和终点城市,利用Dijsktra算法求出起点到终点之间的最短路径. 输入 多组数据,每组数据有m+3行.第一行为两个整数n和m,分别代表城市个数n和路径条数m.第二行有n个字符,代表每个城…
基于Dijsktra算法的最短路径求解   描述 一张地图包括n个城市,假设城市间有m条路径(有向图),每条路径的长度已知.给定地图的一个起点城市和终点城市,利用Dijsktra算法求出起点到终点之间的最短路径. 输入 多组数据,每组数据有m+3行.第一行为两个整数n和m,分别代表城市个数n和路径条数m.第二行有n个字符,代表每个城市的名字.第三行到第m+2行每行有两个字符a和b和一个整数d,代表从城市a到城市b有一条距离为d的路.最后一行为两个字符,代表待求最短路径的城市起点和终点.当n和m都…