背景就不介绍了,REINFORCE算法和AC算法是强化学习中基于策略这类的基础算法,这两个算法的算法描述(伪代码)参见Sutton的reinforcement introduction(2nd). AC算法可以看做是在REINFORCE算法基础上扩展的,所以这里我们主要讨论REINFORCE算法中算法描述和实际代码设计中的一些区别,当然这也适用于AC算法: 1.  时序折扣项为什么在实际代码中不加入  REINFORCE算法中是需要对状态动作对出现在episode内的顺序进行折扣加权的,即 γt…
1. Logistic 分布和对率回归 监督学习的模型可以是概率模型或非概率模型,由条件概率分布\(P(Y|\bm{X})\)或决 策函数(decision function)\(Y=f(\bm{X})\)表示,随具体学习方法而定.对具体的输入\(\bm{x}\)进行相应的输出预测并得到某个结果时,写作\(P(y|\bm{x})\)或\(y=f(\bm{x})\). 我们这里的 Logistic 分类模型是概率模型,模型\(P(Y|\bm{X})\)表示给定随机向量\(\bm{X}\)下,分类标…
1 概述 在该系列上一篇中介绍的基于价值的深度强化学习方法有它自身的缺点,主要有以下三点: 1)基于价值的强化学习无法很好的处理连续空间的动作问题,或者时高维度的离散动作空间,因为通过价值更新策略时是需要对每个动作下的价值函数的大小进行比较的,因此在高维或连续的动作空间下是很难处理的. 2)在基于价值的强化学习中我们用特征来描述状态空间中的某一状态时,有可能因为个体观测的限制或者建模的局限,导致真实环境下本来不同的两个状态却再我们建模后拥有相同的特征描述,进而很有可能导致我们的value Bas…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…
(本系列只用作本人笔记,如果看官是以新手开始学习RL,不建议看我写的笔记昂) 今天是2020年2月7日,开始二刷david silver ulc课程.https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ 还记得去年九月份在YOUTUBE上硬刚david silver课的时候的激情. david silver课件汇总:(共10节课) http://www0.cs.ucl.ac.uk/s…
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任…
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足:   任意x  p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化…
1.训练环境如何正确编写 强化学习里的 env.reset() env.step() 就是训练环境.其编写流程如下: 1.1 初始阶段: 先写一个简化版的训练环境.把任务难度降到最低,确保一定能正常训练.记录正常训练的智能体的分数,与随机动作.传统算法得到的分数做比较. DRL算法的分数应该明显高于随机动作(随机执行动作).DRL算法不应该低于传统算法的分数.如果没有传统算法,那么也需要自己写一个局部最优的算法 评估策略的性能: 大部分情况下,可以直接是对Reward Function 给出的r…
深度学习基础5:交叉熵损失函数.MSE.CTC损失适用于字识别语音等序列问题.Balanced L1 Loss适用于目标检测 1.交叉熵损失函数 在物理学中,"熵"被用来表示热力学系统所呈现的无序程度.香农将这一概念引入信息论领域,提出了"信息熵"概念,通过对数函数来测量信息的不确定性.交叉熵(cross entropy)是信息论中的重要概念,主要用来度量两个概率分布间的差异.假定 p和 q是数据 x的两个概率分布,通过 q来表示 p的交叉熵可如下计算: $H\le…