Pytorch数据加载与使用】的更多相关文章

PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解析 from __future__ import print_function, division import os import torch import pandas as pd              #用于更容易地进行csv解析 from skimage import io, trans…
一.方法一数据组织形式dataset_name----train----val from torchvision import datasets, models, transforms # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomRes…
class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False) 参数: dataset (Dataset) – 加载数据的数据集. batch_size (int, optional) – 每个batch加载多少…
最近在学习PyTorch,  但是对里面的数据类和数据加载类比较迷糊,可能是封装的太好大部分情况下是不需要有什么自己的操作的,不过偶然遇到一些自己导入的数据时就会遇到一些问题,因此自己对此做了一些小实验,小尝试. 下面给出一个常用的数据类使用方式: def data_tf(x): x = np.array(x, dtype='float32') / 255 # 将数据变到 0 ~ 1 之间 x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 x = x.reshape((-1…
[源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 0x00 摘要 0x01 数据加载 1.1 加速途径 1.2 并行处理 1.3 流水线 1.4 GPU 0x02 PyTorch分布式加载 2.1 DDP 2.2 分布式加载 0x03 DistributedSampler 3.1 初始化 3.2 迭代方法 3.3 shuffle数据集 3.3…
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 前情回顾 0x02 DataLoader 2.1 初始化 2.2 关键函数 2.3 单进程加载 2.3.1 区分生成 2.3.2 迭代器基类 2.3.3 单进程迭代器 2.3.4 获取样本 2.4 多进程加载 2.4.1 总体逻辑 2.4.2 初始化 2.4.3 业务重置 2.4.4 获取 inde…
基础信息说明 本文以Seq2SeqTrainer作为实例,来讨论其模型训练时的数据加载方式 预训练模型:opus-mt-en-zh 数据集:本地数据集 任务:en-zh 机器翻译 数据加载 Trainer的数据加载方式主要分为两种:基于torch.utils.data.Dataset的方式加载 和 基于huggingface自带的Datasets的方式(下文用huggingface / Datasets表示)加载.以下是一些需要注意的点:(1)Seq2SeqTrainer()的train_dat…
我们大家都知道ListView,GridView加载数据项,如果数据项过多时,就会显示滚动条.ScrollView组件里面只能包含一个组件,当ScrollView里面嵌套listView,GridView时,由于ScrollView,ListView,GridView都有滚动条,系统默认ScrollView的滚动条,ListView,GridView的滚动条会被忽略,就会出现数据加载不全的问题.解决这种问题,要利用自定义布局的知识解决,具体实现如下所示: 一.ListView数据加载不全问题的解…
多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数据打交道. 2016-08 from __future__ import division from numpy.random import randn import numpy as np import os import sys import matplotlib.pyplot as plt n…
结构: /www | |-- /static |....|-- jquery-3.1.1.js |....|-- echarts.js(echarts3是单文件!!) | |-- /templates |....|-- index.html | |-- app.py | |-- create_db.py 一.先准备数据 # create_db.py # 只运行一次!!! import sqlite3 # 连接 conn = sqlite3.connect('mydb.db') c = conn.…