Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子和:    Sum=(p1^0+p1^1-.p1^e1)*(p2^0+p2^1-p2^e2)--(pn^0+-pn^en) =; 积性函数:s(xy)=s(x)*s(y)    (比如:幂函数,因子和,欧拉函数,莫比乌斯函数) 对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f…
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数. 在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数. 若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的. s(…
题意 给出\(x\),求\(2004^x\)的所有因子和 分析 \(2004=2*2*3*167\) 则\(2004^x\)=\(2^{2x}*3^x*167^x\) s[\(2004^x\)]=s[\(2^{2x}\)]s[\(3^x\)]s[\(167^x\)] s[i]为积性函数 如果\(p\)为素数,则$s(p^x) = (1 + p^1 + p^2 + ... p^x) = (p^{x+1} - 1) / (p-1) $ 然后求出2,3,167的逆元即可 注意开long long 代码…
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 20的因子是1,2,4,5,10,20; 20的因子和是s(20)=1+2+4+5+10+20=42; 2的因子是1,2; 2的因子和是s(2)=1+2=3; 3的因子是1,3; 3的因子和是s(3)=1+3=4; 4的因子和是 s(4)=1+2+4=7; 5的因子和是 s(5)=1+5=6; s(6…
G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1452 Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to dete…
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3,…
Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2183    Accepted Submission(s): 1582 Problem Description Consider a positive integer X,and let S be the sum of all positive integer di…
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因如下:1到n中有m个数字和n拥有公共的最大因子p,那么就需要把m*p加入答案中.问题是如何计算m的个数.因为假设某个数i与n的最大公约数为p,那么gcd(i,n) = p,可以得到gcd(i/p,n/p)=1.也就是说,有多少个i,就有多少个i/p与n/p互质.那么显然m即为n/p的欧拉函数φ(n/p). 知…
Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次有两种做法:文...武......想讲武的......我们其实这次更博只是为了介绍一种知识点——线性筛法筛积性函数.这里,给出线性筛的万能筛法. 1.初值:显然,初值是必要的. 2.我们类比欧拉筛,用k(n)举例.当n是素数时的情况使我们必须的,这相当于初值一样重要. 3.又因为,我们主要筛积性函数,显然函数…
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 常见的积性函数 copy&modified from 积性函数 - 维基百科,自由的百科全书 φ(n) -欧拉函数 μ(n) -莫比乌斯函数,关于非平方数的质因子数目 gcd(n,k) -最大公因子,当k一定 d(n) -n的正因子数目…