代码測试环境:Hadoop2.4+Mahout1.0 前面博客:mahout贝叶斯算法开发思路(拓展篇)1和mahout贝叶斯算法开发思路(拓展篇)2 分析了Mahout中贝叶斯算法针对数值型数据的处理.在前面这两篇博客中并没有关于怎样分类不带标签的原始数据的处理. 以下这篇博客就针对这种数据进行处理. 最新版(适合Hadoop2.4+mahout1.0环境)源代码以及jar包能够在这里下载Mahout贝叶斯分类不含标签数据: 下载后參考使用里面的jar包中的fz.bayes.model.Bay…
首先说明一点,此篇blog解决的问题是就下面的数据如何应用mahout中的贝叶斯算法?(这个问题是在上篇(...完结篇)blog最后留的问题,如果想直接使用该工具,可以在mahout贝叶斯算法拓展下载): 0.2 0.3 0.4:1 0.32 0.43 0.45:1 0.23 0.33 0.54:1 2.4 2.5 2.6:2 2.3 2.2 2.1:2 5.4 7.2 7.2:3 5.6 7 6:3 5.8 7.1 6.3:3 6 6 5.4:3 11 12 13:4 前篇blog上面的数据在…
如果想直接下面算法调用包,可以直接在mahout贝叶斯算法拓展下载,该算法调用的方式如下: $HADOOP_HOME/bin hadoop jar mahout.jar mahout.fansy.bayes.BayerRunner -i hdfs_input_path -o hdfs_output_path -scl : -scv , 调用参数如下: usage: <command> [Generic Options] [Job-Specific Options] Generic Option…
参考文章:https://blog.csdn.net/qq_32690999/article/details/78737393 项目代码目录结构 模拟训练的数据集 核心代码 Bayes.java package IsStudent_bys; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; public class Bayes { //按类别分类 //输入:训练数据(dataSet) //输出:…
朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向量\(x_1\)至\(x_n\): \(P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots x_n \mid y)} {P(x_1, \dots, x_n)}\) 依据朴素条件独立假设可得: \(P(x_i \mid y, x_1, \dots, x_{i-…
Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案 1.1. 七.什么是贝叶斯过滤器?1 1.2. 八.建立历史资料库2 1.3. 十.联合概率的计算3 1.4. 十一.最终的计算公式3 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,4 1.1. 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法&quo…
Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理 1.1. 最开始的垃圾邮件判断方法,使用contain包含判断,只能一个关键词,而且100%概率判断1 1.2. 元件部件串联定律1 1.3. 垃圾邮件关键词串联定律 表格法可视化贝叶斯定律1 1.4. 十一.最终的计算公式2 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,2 1.1. 文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B). 1.2…
Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2)   算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把.txt中的内容读到数组中保存 *$filename:文件名称 */ //-------------------------------------------------------------------- function getFileContent($filename) { $array = ar…
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.html  基于朴素贝叶斯分类器的文本聚类算法 (下) http://www.cnblogs.com/phinecos/archive/2008/10/21/1316044.html 算法杂货铺——分类算法之朴素贝叶斯分类 http://www.cnblogs.com/leoo2sk/archive/…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…