题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化为求区间 [1,b/k]和 [1,d/k]的互质数对个数 由于题目规定 (x,y)和(y,x)是同一种,所以我们可以规定 x<y,,然后只需对每一个y求出比他小的即可 公共部分可以通过欧拉函数快速求出.. 非公共部分就不行了.. 所以就分解质因数,用容斥的方法求了 #include <iostre…