CNN for Visual Recognition (01)】的更多相关文章

CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs231n/syllabus.html 主要利用神经网络解决图像分类问题.…
参考:http://cs231n.github.io/assignment1/ Q1: k-Nearest Neighbor classifier (30 points) import numpy as np from matplotlib.cbook import todate class KNearestNeighbor: """ a kNN classifier with L2 distance """ def __init__(self)…
图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机视觉(Computer Vision)问题中一个基本问题,也是很要的一个问题.诸如物体检测.图像分割等可以利用图像分类来解决. 图像分类问题的主要难点在以下几个方面: 视角差异(viewpoint variation):拍摄角度 比例差异(Scale variation):缩放比例 形变(Defor…
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识别结构,该结构由两个特征提取器产生,两个输出是图像每一个位置的外积(outer product),然后进行 pool,得到最终的图像描述算子.这种结构可以对局部 pairwise feature interactions 以平移不变的方式进行建模.而且,可以产生不同的无序的文字描述,像 Fisher…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类(>1000类),方法是混合多个小深度网络实现更多类的分类.本文从以下五个方面来对论文做个简要整理: 背景:简要介绍与本文方法提出的背景和独特性. 方法:介绍论文使用的大体方法. 细节:介绍论文中方法涉及到的问题及解决方案. 实验:实验结果和简要分析. 总结:论文主要特色和个人体会. 一.背景 1.目标…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun  The 13th European Conference on Computer Vision (ECCV), 2014 声明:本文所有图片均来自原始文章,自己的理解也未必正确,请查看原图并拍砖 本文的两个亮点: 1. 多尺度训练CN…
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型:Convolutional Neural Networks,简称CNN,主要利用CNN来做visual recognition,或者说是image classification,object recognition等.我自己在学习的过程中,一边翻译一边总结,整理出这些中文版的lecture not…