Luogu P5363 [SDOI2019]移动金币】的更多相关文章

话说这题放在智推里好久了的说,再不写掉对不起自己233 首先你要知道一个叫做阶梯Nim的东西,具体的可以看这篇博客 那么我们发现这和这道题的关系就很明显了,我们把两个金币之间的距离看作阶梯Nim的每一堆的石子个数 考虑阶梯Nim的结论:奇数编号堆的石子异或和为\(0\),发现我们可以搞一个很暴力的DP出来 \(f_{i,j,k}\)表示当前放了前\(i\)堆石子,总共用了石子个数是\(j\),其中奇数堆石子的异或和为\(k\)的方案数,转移的时候直接枚举当前堆拿了几个即可,复杂度\(O(n^3\…
[返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\sum_{i\in X}{a_i}-\sum_{i\in Y}{a_i}|∣i∈X∑​ai​−i∈Y∑​ai​∣的值最小. Solution 3878\text{Solution 3878}Solution 3878 解法一 模拟退火SA. 尝试重新排列 aaa,将 aaa 的前半部分分成一堆,后半…
点此看题面 大致题意: 有\(n\)个格子,让你摆放\(m\)个金币.二人博弈,每次选择一个金币向左移任意格,无法移动者输.问有多少种方案使先手必胜. 阶梯\(Nim\) 阶梯\(Nim\)的基本模型,就是有\(n\)层楼梯(从\(0\sim n-1\)编号),每层楼梯上有若干石子,每次可以取任一层楼梯上任意多个石子到下一层,无法移动者输. 它的解决方法就是,去掉所有编号为偶数的楼梯,然后对剩下的这些编号为奇数的楼梯当成普通\(Nim\)来做. 原理是,如果一人移动编号为偶数的楼梯上的石子到下一…
[SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7, mod = 1e9 + 9; int read() { int x = 0, f = 1; char s = getchar(); for (;s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1; f…
把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法乘法的lazytag,整体加整体乘的时候像线段树一样改smljlc,还有修改val,整体赋值的时候把valsmljlc都初始化,记录一个赋值时间ti 单点查询的时候如果这个点的修改时间比当前赋值时间早就直接val,否则是数组值和lazytag操作一下,整体查询直接sm+val*has即可 那个求逆元…
分析 阶梯NIM模型:共有m+1堆石子,石子总数不超过n-m,求必胜的,即奇数堆石子数目异或和非零的局面数.补集转化,答案C(n,m)-奇数堆石子数目异或和位0的局面数. 可以想到按位dp,设f[i,j]表示已经考虑了前i位(异或和0),石子和为j的方案数:转移时考虑下一位出现的被统计1的个数k,k为偶数,带系数C((m+1)/2,k),即m+1/2个奇数堆中出现k个1的方案. 最后将没有分配的n-m-i个石子放入m/2个偶数堆中,可以一个都不放. 实现 #include <bits/stdc+…
原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中减去\(val[pos[x]]\)(\(pos\)表示离散化后的位置,\(val\)表示特殊点的数值):将\(val[pos[x]]\)变成\(\frac{val_{new}-plus}{mul}\):如果\(pos[x]\)不在非零位置的栈中,将\(pos[x]\)压入栈中:在总和中加上\(val…
原题传送门 每次查询的实际就是将地图的一个前缀和一个后缀合并后的图的最小生成树边权和 我们要预处理每个前缀和后缀的最小生成树 实际求前缀和(后缀和)的过程珂以理解为上一个前缀和这一列的最小生成树进行合并,实际最后前缀和后缀合并也是这样 如果暴力进行合并的话,每次边数是nm级别的,明显会TLE和MLE 我们考虑一下,实际每次合并主要和最左.最右两列(称这些点为关键点)有关,每次合并,原来最小生树中有可能会有一些边要删掉使得合并后是最小生成树.感性理解一下,珂能删掉的边一定在两个关键点在原来最小生成…
原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个点的度,最后找尴尬聚会中度数最大的点,把它及在它之后删除的点加入热闹的聚会的集合中,这时p就是这个点的度数.这时p,q都较大,就珂以过了,正确性我也不会证明 #include <bits/stdc++.h> #define inf 0x3f3f3f3f #define N 10005 #defin…
容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位考虑,设f[i][j]为已确定奇数石子堆的第i位及以上的放法后,保证当前异或和为0,剩下j个石子时的方案数.转移套一些组合数即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib…