点此看题面 大致题意: 让你把一个长度为\(n\)的序列划分成\(m\)块,求每块数总和的最小方差乘\(m^2\)的值. 转化方差 首先方差显然是一个比较复杂的东西,需要进行一定转化. 设\(p_i\)为第\(i\)块数总和:\(s_i\)为原序列的前缀和,即\(s_i=\sum_{i=1}^ia_i\):\(\bar p\)为\(p_i\)的平均值,即\(\bar{p}=\frac{\sum_{i=1}^mp_i}m=\frac{s_n}m\). 然后推式子: \[m^2*\frac{\sum…
题目分析 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助Pine求出最小方差是多少. 分析 比较简单的斜率优化. \[f[i][j]=min(f[k][j-1]+m(sum[i]-sum[j])^3-s\times s_n(s_i-s_j))\…
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助Pine求出最小方差是多少. 设方差是v,可以证明,v×m^2是一个整数.为了避免精度误差,输出结果时输出v×m^2.  …
4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status][Discuss] Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以…
BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助Pine求出最小方差是多少. 设方差是v,可以证明,v×m2是一个整数.为了避免精度误差,输出结果时输出v×m2. Input 第一…
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相邻两段路的分界点设有休息站. \(Pine\)计划用\(m\)天到达\(T\)地.除第\(m\)天外,每一天晚上\(Pine\)都必须在休息站过夜.所以,一段路必须在同一天中走完. \(Pine\)希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助\(Pine\)求出…
题面 传送门 思路 把$vm^2$展开化一下式子,可以得到这样的等价公式: $vm^2=m\sum_{i=1}^m a_i^2-\sum_{i=1}^m a_i$ 那么我们要最小化的就是$\sum_{i=1}^m a_i^2$这个东西 设$dp[i][j]$表示前i段路程走了j天 转移显然:$dp[i][j]=min(dp[k][j-1]+dis(k,i)^2)(k=1...i-1)$ 这就是个模板的斜率优化dp了 总复杂度$O(nm)$ Code: 写代码的时候需要注意一点:当前这一层的状态,…
1.HDU3507 裸题,有助于理解斜率优化的精髓. dp[i]=min(dp[j]+m+(sum[i]-sum[j])2) 很显然不是单调队列. 根据斜率优化的的定义,就是先设两个决策j,k 什么时候我们认为在 i 的环境下 j 比 k 好呢?根据上面的递推式,得到下面这么一个式子 dp[j]+m+(sum[i]-sum[j])2<dp[k]+m+(sum[i]-sum[k])2 打开括号: dp[j]+m+sum[i]2+sum[j]2-2*sum[i]*sum[j]<dp[k]+m+su…
不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294) 部分 这是——大米饼大佬 看完了大米饼同志对斜率优化的介绍,下面我来稍微讲讲对斜率优化dp 的理解 前置知识 单调队列(栈) 平面直角坐标系 直线解析式 等式处理 dp状态设计 balabala...... 理解 其实斜率优化 dp 的原理很简单: 根据题目(斜率优化 dp 的题目一般都很裸)的…
题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一推类似下面这种式子就会发现事实上结果和切的顺序无关 \[a(b+c)+bc=ab+c(a+b)=ab+ac+bc\] 那么就可以用\(f[i][j]\)表示切了\(j\)次,最右一次在\(i\)后面切的最大值.用\(sum[i]\)表示原序列前\(i\)个数之和,那么就有了这个DP方程(假设在\(i…