Spark On Yarn: 从0.6.0版本其,就可以在在Yarn上运行Spark 通过Yarn进行统一的资源管理和调度 进而可以实现不止Spark,多种处理框架并存工作的场景 部署Spark On Yarn的方式其实和Standalone是差不多的,区别就是需要在spark-env.sh中添加一些yarn的环境配置,在提交作业的时候会根据这些配置加载yarn的信息,然后将作业提交到yarn上进行管理 首先请确保已经部署了Yarn,相关操作请参考: hadoop2.2.0集群安装和配置 部署完…
最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大家的面前. 作为技术发烧友,作为一个看客,来围观下,不过从PPT中列出来的技术来看,未来的发展趋势还是说是有的,而且还是很有发展前景的. 现在Spark和Yarn也就发布2年多的时间,随着社区力量的跟上,不断的将之前的项目都放到一个更好的资源架构的整合上来实现.特别是放到内存上来实现,在速度和效率上…
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大家也可参考spark的官网地址:http://spark.apache.org/docs/latest/running-on-yarn.html 1. 在yarn上执行spark 需要确保提交spark任务的客户端服务器上, HADOOP_CONF_DIR 或者 YARN_CONF_DIR 目录中包…
MRv1 VS MRv2 MRv1: - JobTracker: 资源管理 & 作业控制- 每个作业由一个JobInProgress控制,每个任务由一个TaskInProgress控制.由于每个任务可能有多个运行实例,因此,TaskInProgress实际管理了多个运行实例TaskAttempt,每个运行实例可能运行了一个MapTask或ReduceTask.每个Map/Reduce Task会通过RPC协议将状态汇报给TaskTracker,再由TaskTracker进一步汇报给JobTrac…
[root@linux-node1 bin]# ./spark-submit \> --class com.kou.List2Hive \> --master yarn \> --deploy-mode client \> sparkTestNew-1.0.jar18/11/27 21:21:14 INFO spark.SparkContext: Running Spark version 2.2.118/11/27 21:21:15 WARN util.NativeCodeLoa…
[root@linux-node1 bin]# ./spark-submit \> --class com.kou.List2Hive \> --master yarn \> --deploy-mode cluster \> sparkTestNew-1.0.jar18/11/27 21:17:56 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using…
最近在hive里将mr换成spark引擎后,执行插入和一些复杂的hql会触发下面的异常: org.apache.hive.service.cli.HiveSQLException: Error while compiling statement: FAILED: SemanticException Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create Sp…
?/ 为什么需要 Yarn? /? Yarn?的全称是?Yet Anther Resource Negotiator(另一种资源协商者).它作为 Hadoop?的一个组件,官方对它的定义是一个工作调度和集群资源管理的框架. Yarn?最早出现于?Hadoop 0.23?分支中,0.23?分支是一个实验性分支,之后经过了几次迭代,最后发布于?2014?年?6?月的?0.23.11?版本(该分支的最后一个版本).在?0.23.0?发布后不久的?2011?年?12?月,Hadoop?的 0.20?分支…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
什么是Spark 大数据计算框架 离线批处理 大数据体系架构图(Spark) Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLib用于机器学习,Spark GraphX用于图计算 Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS.Hive.HBase)等,,以及资源调度(Yarn) Spark+hadoop的组合是大数据领域最热…