如果你善于使用Pandas变换数据.创建特征以及清洗数据等,那么你就能够轻松地使用Dask和Numba并行加速你的工作.单纯从速度上比较,Dask完胜Python,而Numba打败Dask,那么Numba+Dask基本上算是无敌的存在.将数值计算分成Numba sub-function和使用Dask map_partition+apply,而不是使用Pandas.对于100万行数据,使用Pandas方法和混合数值计算创建新特征的速度比使用Numba+Dask方法的速度要慢许多倍. Python:…
Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不一致.有异常的数据,严重影响到数据建模的执行效率,甚至可能导致模型结果的偏差,因此要数据预处.数据预处理主要是将原始数据经过文本抽取.数据清理.数据集成.数据处理.数据变换.数据降维等处理后,不仅提高了数据质量,而且更好的提升算法模型性能.数据预处理在数据挖掘.自然语言处理.机器学习.深度学习算法中…
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Feature extration|特征提取 Preprocessing data|数据预处理 1 Dataset transformations scikit-learn provides a library of transformers, which may clean (see Preproce…
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileName) as op: lines=op.readlines() # 返回值是list lineNumer=len(lines) # list长度即文件中的行数 dataMatrix=np.zeros((lineNumer,3)) # 初始化lineNumer行,3列的全0矩阵,注意双层括号 lab…
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以增强…
使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2.3.查看数据特殊值和数值 2.3.1.查看空值 2.3.2.查看唯一值 2.3.3.查看数值 2.3.4.查看前后数据 3.数据清洗和预处理等步骤 3.1.空值处理 3.2.空格处理 3.3.字符串大小写处理 3.4.更改数据类型和列名称 3.5.重复值处理 3.6.数据替换 3.7.数据合并和排…
  关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以…
我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是: 对数据进行标准化.归一化.方差过滤的时候数据都从DataFrame格式变为了array格式. 这样数据的列名就会消失,且进行特征选择之后列的数量也会发生改变,因此需要重新对列进行映射,为其加上列名并转化为DataFrame的格式.一般情况下可以分为三种情况: 1.对数据进行缺失值填补.编码(处理分类型变量).二值化(处理连续型变量)一般都是按照列对…
使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5)…
将数据中导演与演员的关系整理出来,得到导演与演员的关系数据,并统计合作次数 import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline import warnings warnings.filterwarnings('ignore') # 不发出警告 # 读取数据 import os # os.chdir('C:/Users/Hjx/Desktop/') os.chdir(r…