Java动态规划实现最短路径问题】的更多相关文章

问题描述 给定一个加权连通图(无向的或有向的),要求找出从每个定点到其他所有定点之间的最短路径以及最短路径的长度. 2.1 动态规划法原理简介 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类…
最近一直在研究动态规划的问题.今天遇到了取硬币问题. 其实动态规划还是,我从底部向顶部,依次求出每个状态的最小值,然后就可以标记上. 这道题目就是,假如有1,5,7,10这四种币值的硬币,我取14元,取的硬币数最少要多少张. 其实动态规划就是要求出状态转移方程,就好比我的上一个博客的求最短路径的问题.而这道取硬币问题呢.如果我的硬币大于有的币值,那么就能状态转移 转移为temp[i-weizhi[j] + 1.temp[]是用来存放每种币值的最小数目.weizhi[]是用来存放币值.比如说吧,t…
这里是简单的动态规划问题.其实,如果我们学过数据结构,应该就接触过动态规划问题,当时一直没有反应过来.我们求最小生成树用的是贪婪算法.而求最短路径就是动态规划.从一个点出发,到另外每个点的最短距离.在求最短路径问题中,取一点,然后与选取与这个点连接的,最小的一条边,把这个点标上,然后求与标上点的连接的点的最短路径.我们先来看这道题目吧 1.题目描述 将一个由N行数字组成的三角形,如图所以,设计一个算法,计算出三角形的由顶至底的一条路径,使该路径经过的数字总和最小. 我们可以把这个横过来看变成 7…
1. 介绍 动态规划典型的被用于优化递归算法,因为它们倾向于以指数的方式进行扩展.动态规划主要思想是将复杂问题(带有许多递归调用)分解为更小的子问题,然后将它们保存到内存中,这样我们就不必在每次使用它们时重新计算它们. 要理解动态规划的概念,我们需要熟悉一些主题: 什么是动态规划? 贪心算法 简化的背包问题 传统的背包问题 Levenshtein Distance LCS-最长的共同子序列 利用动态规划的其他问题 结论 本文所有代码均为java代码实现. 2. 什么是动态规划? 动态规划是一种编…
很多动态规划算法非常像数学中的递推.我们如果能找到一个合适的递推公式,就能很容易的解决问题.我们用dp[n]表示以第n个数结尾的最大连续子序列的和,这里第n个数必须在子序列中.于是存在以下递推公式: dp[n] = max(0, dp[n-1]) + num[n] 仔细思考后不难发现这个递推公式是正确的,则整个问题的答案是max(dp[m]) | m∈[1, N].java语言代码如下: //dp[i] = max{dp[i-1]+num[i],num[i]} class Solution {…
这是一道动态规划题,和昨天的取硬币还有最长公共字串有点类似. 1.题目描述:                        某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高                 度.某 天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),…
Description 给定一个正整数的集合A={a1,a2,-.,an},是否可以将其分割成两个子集合,使两个子集合的数加起来的和相等.例A = { 1, 3, 8, 4, 10} 可以分割:{1, 8, 4} 及 {3, 10} Input 第一行集合元素个数n n <=300 第二行n个整数 Output 如果能划分成两个集合,输出任意一个子集,否则输出"no" Sample Input 5 1 3 8 4 10 Sample Output 3 10 一开始t[i][j]都…
Description 给你2个矩阵A.B,我们使用标准的矩阵相乘定义C=AB如下: A数组中栏(column)的数目一定要等于B数组中列(row)的数目才可以做此2数组的相乘.若我们以rows(A),columns(A)分 别代表A数组中列及栏的数目,要计算C数组共需要的乘法的数目为:rows(A)columns(B)columns(A).例如:A数组是一个 10x20的矩阵,B数组是个20x15的矩阵,那么要算出C数组需要做101520,也就是3000次乘法. 要计算超过2个以上的矩阵相乘就…
问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps Example 2: Input: 3 Output: 3 Explanation: There are three ways to…
45. 跳跃游戏 II 动态规划 此题可以倒着想. 看示例: [2,3,1,1,4] 我们从后往前推,对于第4个数1,跳一次 对于第3个数1,显然只能跳到第4个数上,那么从第3个数开始跳到最后需要两次 对于第2个数3,显然一步到位,跳一次 对于第一个数2,只能选择跳一次还是跳两次,显然选择跳一次的收益更大,最终只需跳两次 倒着推时发现满足①最优子结构,②重叠子问题.可以使用动态规划. 状态描述:f[i]表示在第i个位置最小需要几次可跳到最后一个位置 状态转移方程:f[i] = min(f[i+1…
44. 通配符匹配 动态规划 做动态规划很简单,三步走: 第一步,判断可否用动态规划做,即判断是否满足两个条件:①最优子结构,②重叠子问题.显然该题求s与p是否match,可由其字串层层分解上来. 我语文不好一两句解释不清楚,不过看完这篇文章,基本就会判断是不是满足这两个条件了. 算法-动态规划 Dynamic Programming--从菜鸟到老鸟 第二步,描述状态.这个题的状态还是比较好描述的,boolean f[i][j] :表示子串s[0~i-1] 与子串p[0~j-1]是否match…
package main import ( "fmt" ) func floyd(m [][]int) { length := len(m[]) var min, i, j int ; k < length; k++ { ; i < length; i++ { ; j < length; j++ { && m[k][j] > { min = m[i][k] + m[k][j] { m[i][j] = min } } } } } ; i <…
建议4: 避免带有变长参数的方法重载 在项目和系统的开发中,为了提高方法的灵活度和可复用性,我们经常要传递不确定数量的参数到方法中,在Java 5之前常用的设计技巧就是把形参定义成Collection类型或其子类类型,或者是数组类型,这种方法的缺点就是需要对空参数进行判断和筛选,比如实参为null值和长度为0的Collection或数组. 而 Java 5引入变长参数(varags)就是为了更好地提高方法的复用性,让方法的调用者可以“随心所欲”地传递实参数量,当然变长参数也是要遵循一定规则的,…
阮行止 上海洛谷网络科技有限公司 讲师 intro 很有意思的问题.以往见过许多教材,对动态规划(DP)的引入属于"奉天承运,皇帝诏曰"式:不给出一点引入,见面即拿出一大堆公式吓人:学生则死啃书本,然后突然顿悟.针对入门者的教材不应该是这样的.恰好我给入门者讲过四次DP入门,迭代出了一套比较靠谱的教学方法,所以今天跑过来献丑. 现在,我们试着自己来一步步"重新发明"DP. 从一个生活问题谈起 先来看看生活中经常遇到的事吧--假设您是个土豪,身上带了足够的1.5.10…
Ansj是由孙健(ansjsun)开源的一个中文分词器,为ICTLAS的Java版本,也采用了Bigram + HMM分词模型(可参考我之前写的文章):在Bigram分词的基础上,识别未登录词,以提高分词准确度.虽然基本分词原理与ICTLAS的一样,但是Ansj做了一些工程上的优化,比如:用DAT高效地实现检索词典.array + linked-list方式实现分词DAG.支持自定义词典与自定义消歧义规则等. 1. 前言 Ansj支持多种分词方式,其中ToAnalysis为店长推荐款: 它在易用…
维特比算法(Viterbi) 维特比算法 维特比算法shiyizhong 动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔科夫模型中.术语“维特比路径”和“维特比算法”也被用于寻找观察结果最有可能解释的相关dongtai 规划算法.例如在统计句法分析中动态规划可以被用于发现最有可能的上下文无关的派生的字符串,有时被称为“维特比分析”. 利用动态规划寻找最短路径 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法,通常情况下应用于最优…
摘自:https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA https://www.cnblogs.com/zhibei/p/9391014.html CRF(Conditional Random Field),即条件随机场.经常被用于序列标注,其中包括词性标注,分词,命名实体识别等领域. Viterbi算法,即维特比算法.是一种动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文.隐马尔科夫模型.条件随机…
动态规划求最短路径算法,与穷举法相比优点在于大大降低了时间复杂度; 假如从起点A到终点S的最短路径Road经过点B1,那么从起点A到B1的最短路径的终点就是B1,否则如果存在一个B2使得A到B2的距离小于B1,那么起点A到终点S的最短路径Road就不应该经过B1,而应该经过B2,这显示是矛盾的,证明了满足最优性原理; 假设从A到S需要经过N个时刻,每个时刻有M个状态(B1,B2...BM),那么我们只需要记录对应每个状态的最短路径即可,这样在任意时刻,只需要考虑非常有限的几种最短路径即可(取决于…
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * 需求:计算网页访问量前三名 * 用户:喜欢视频 直播 * 帮助企业做经营和决策 * * 看数据 */ object UrlCount { def main(args: Array[String]): Unit = { //1.加载数据 val conf:SparkConf = new Spa…
动态规划的概念对于新手来说枯燥难懂,就算看懂了,做题的时候依旧抓耳挠腮的毫无头绪,这些比较难理解的算法,还是需要根据例子来一步步学习和理解,从而熟练掌握,下面,咱们就通过一个简单的小例子来学习动态规划: 数字三角形(POJ1163) 在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大. 路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 三角形的行数大于1小于等于100,数字为 0 - 99 输入格式: 5      //表示三角形的行…
基本思想: 动态规划算法通常用于求解具有某种最优性质的问题(作用就是求最优解).在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解. 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的. 若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需…
import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { protected SeqList<E> vertexlist; // 顺序表存储图的顶点集合 protected int[][] adjmatrix; // 图的邻接矩阵 二维图 存储的是每个顶点的名称(A,B,C,D....) ; // private final int MAX_WEIGHT = …
编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字符: 例如,将单词kitten转成单词sitting需要如下三个步骤: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 编辑距离的应用在信息检索.拼写纠错.机器翻译.命名实体抽取.同义词寻找…
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图.文件内容的格式参考这篇文章第一部分. 二,算法实现思路 无向图的最短路径实现相对于带权的有向图最短路径实现要简单得多. 源点的最短路径距离为0,从源点开始,采用广度优先的顺序,首先将与源点邻接的顶点的路径求出,然后再依次求解图中其他顶点的最短路径. 由于顶点的最短路径的求解顺序 是一个 广度优先的顺…
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵.  图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无向图的边…
作者版权所有,转载请注明出处,多谢.http://www.cnblogs.com/Henvealf/p/5574455.html 上一篇介绍了有关图的表示和遍历实现.数据结构 -- 简单图的实现与遍历 (Java)现在就来看看关于求图的最短路径的问题: 注意:本人学习图的时候看的书是: <<数据结构与算法 Java语言版>> (美)Adam Drozdek/著 周翔/译 机械工业出版社出版 由于要仔细讲解内容过多并且本人水平有限,推荐大家找出这本书来看,本篇文章主要是对其中Dijk…
算法仅仅要懂原理了,代码都是小问题,先看以下理论,尤其是红色标注的(要源代码请留下邮箱,有測试用例,直接执行就可以) A*算法 百度上的解释: A*[1](A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法. 公式表示为: f(n)=g(n)+h(n), 当中 f(n) 是从初始点经由节点n到目标点的估价函数, g(n) 是在状态空间中从初始节点到n节点的实际代价, h(n) 是从n到目标节点最佳路径的预计代价. 保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:…
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图.文件内容的格式参考这篇文章第一部分. 二,算法实现思路 无向图的最短路径实现相对于带权的有向图最短路径实现要简单得多. 源点的最短路径距离为0,从源点开始,采用广度优先的顺序,首先将与源点邻接的顶点的路径求出,然后再依次求解图中其他顶点的最短路径. 由于顶点的最短路径的求解顺序 是一个 广度优先的顺…
一:动态规划 1)动态规划的向前处理法 java中没有指针,所以邻接表的存储需要转化一中形式,用数组存储邻接表 用三个数组u,v,w存储边,u数组代表起点,v数组代表终点,w代表权值;例如:1-->2 权值为9 存为:u[i]=1,v[i]=2,w[i]=9,如果该边为第一条边则i=1; package dynamicProgramming; public class FGRAPH { public static void main(String[] args) { // TODO Auto-g…
题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; //保存顶点个数 int M; //保存边个数 int max; //用来设定一个比所有边的权都大的值,来表示两点间没有连线 int[] visit; //找到一个顶点的最短距离,就把它设为1,默认为0(即还没有找到) int[][] distance; //保存图中个边的值,两点间无边则设为max…