2018-12-05 20:28:15 在机器学习领域有一个很重要的假设,即独立同分布假设,也就是说训练集和测试集是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障.而BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布. 为什么深度神经网络随着网络深度加深,训练起来越困难,收敛越来越慢? 有很多研究人员都致力于研究这个问题,也提出了很多行之有效的方法,BN就是google小组在论文Batch Normalizatoin中提出来的方法…
希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我们有一个Data Matrix $\mathbf{X}\in \mathbb{R}^{n\times d}$ 我们首先必须要做的事情就是对这个Data Matix进行标准化,意义是:“取消由于量纲不同.自身变异或者数值相差较大所引起的误差.”这个解释还不是很明白,那么我们可以想象如果不进行标准化会发…
简单的举个例子:一张表有两个变量,一个是体重kg,一个是身高cm.假设一般情况下体重这个变量均值为60(kg),身高均值为170(cm).1,这两个变量对应的单位不一样,同样是100,对于身高来说很矮,但对于体重来说已经是超重了.2,单位越小,数值越大,对结果的影响也越大,譬如170cm=1.7m. 简单讲,归一化的目的是可以用数值来直接进行比较,如果不归一化由于变量特性不同,同样加10,代表的意义不一样.…
1 概念   归一化:1)把数据变成(0,1)或者(1,1)之间的小数.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理,更加便捷快速.2)把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权.归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量.   标准化:在机器学习中,我们可能要处理不同种类的资料,例如,音讯和图片上的像素值,这些资料可能是高维度的,资料标准化后会使每个特征中的数值平均变为0(将每个特征的值都减掉原始资料…
博主学习的源头,感谢!https://www.jianshu.com/p/95a8f035c86c 归一化 (Normalization).标准化 (Standardization)和中心化/零均值化 (Zero-centered)归一化:1)把数据变成(0,1)或者(1,1)之间的小数.标准化:使每个特征中的数值平均变为0(将每个特征的值都减掉原始资料中该特征的平均).标准差变为1中心化:平均值为0,对标准差无要求归一化和标准化的区别:归一化是将样本的特征值转换到同一量纲下把数据映射到[0,1…
http://blog.csdn.net/pipisorry/article/details/52247379 基础知识参考: [均值.方差与协方差矩阵] [矩阵论:向量范数和矩阵范数] 数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权.其中最典型的就是数据的归一化处理,即将数据…
转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法.离散参考[数据预处理:独热编码(One-Hot Encoding)]. 基础知识参考: [均值.方差与协方差矩阵] [矩阵论:向量范数和矩阵范数] 数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较…
1. 概要 数据预处理在众多深度学习算法中都起着重要作用,实际情况中,将数据做归一化和白化处理后,很多算法能够发挥最佳效果.然而除非对这些算法有丰富的使用经验,否则预处理的精确参数并非显而易见. 2. 数据归一化及其应用 数据预处理中,标准的第一步是数据归一化.虽然这里有一系列可行的方法,但是这一步通常是根据数据的具体情况而明确选择的.特征归一化常用的方法包含如下几种: 简单缩放 逐样本均值消减(也称为移除直流分量) 特征标准化(使数据集中所有特征都具有零均值和单位方差) 一般做机器学习应用的时…
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权. 其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有: min-max标准化(Min-max normalization) 也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下: 其中max为样本数据的最大值,m…
Normalization Normalization refers to rescaling real valued numeric attributes into the range 0 and 1. It is useful to scale the input attributes for a model that relies on the magnitude of values, such as distance measures used in k-nearest neighbor…