A. Guest From the Past(数学推式子)】的更多相关文章

\(n元,买塑料杯子a元,买玻璃杯子b元,但玻璃杯子用完后可以卖c元\) \(求最多买的杯子.\) \(---------------------------分割-------------------------------\) \(因为塑料杯子固定,我们先确定买多少玻璃杯子.\) \(很明显当n>=b(至少购买一次)且(b-c)<a(至少比塑料杯划算才行),我们才买玻璃杯\) \(设这种情况下买了X个玻璃杯,剩下的钱不够买玻璃杯了\) \[也就是n-X(b-c)<b \] \[变形得X…
\(数学题,式子并不难推,但边界是真的烦\) \(\color{Red}{Ⅰ.其实可以发现,当m>=n时,每次都可以粮食补到n,所以一定是在第n天消耗完毕}\) \(\color{Purple}{Ⅱ.当n>m时,前m天每次粮食都补到n}\) \(设从m+1天开始,需要mid天消耗完毕\) \(因为每天都可以加m粮食,所以mid天可以加X_{补充}=(mid-1)*m粮食(因为第m+1天是补满前一天的,所以是mid-1)\) \(然后麻雀带走的粮食用等差数列计算m+1,m+2,...,m+mid…
LINK:数列求和 每次遇到这种题目都不太会写.但是做法很简单. 终有一天我会成功的. 考虑类似等比数列求和的东西 帽子戏法一下. 设\(f(k)=\sum_{i=1}^ni^ka^i\) 考虑\(af(k)\)这个式子 两式做差. \((a-1)f(k)=n^n\cdot a^{n+1}-a+\sum_{i=2}^n{a^i((i-1)^k-i^k)}\) 右边直接二项式展开 然后 交换求和顺序可得. \((a-1)f(k)=n^k\cdot a^{n+1}-a+\sum_{j=0}^{k-1…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.php?id=3516 题解:http://blog.miskcoo.com/2014/06/bzoj-3157 没管 O(m) 的方法…… UPD(2019.2.20):这样构造的思想大概是想要用 \( f(j) \) (j<=i) 来表示出 \( f(i) \) . 考虑 \( f(m)=\sum…
发现最近好少写博客啊(其实是各种摆去了) 更一点吧 这道题要求最小化均方差,其实凭直觉来说就是要使每个块分的比较均匀一点,但是单单想到想到这些还是不够的, 首先f[i][j][k][l][t]表示以(i,j)为左上角,(k,l)为右下角,一共分割的t次的矩形的最小xx, 其中xx是某个与最小均方差挂钩的东西, 通常这种要求推式子的题目都要从小的情况推广到所有情况. 这道题也是一样的, 对于一个被分为x1和x2的矩形而言(分割了一次),用X表示平均数, 那么X=权值和/块数, 那么方差为:[(X…
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. \(\color{#0066ff}{输入格式}\) 一行两个整数p.n. \(\color{#0066ff}{输出格式}\) 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.php?id=3516 这篇博客写得太好:http://blog.miskcoo.com/2014/06/bzoj-3157 然而目前之会 \( O(m) \) 的做法: 感觉关键是设计 \( S_{i} \),把它设在 \( m \) 那一维上很妙,毕竟 \( i^{m} \) 不太好做: 然而推式…
要点 题目链接 1e18的数据无法\(O(n)\)的容斥,于是推式子,官解,其中式子有点小错误 不必预处理mu,直接按照素数的个数判断正负即可 #include <bits/stdc++.h> using namespace std; typedef long long ll; int T; ll k, q, n, m; int mark[25]; void pre() { mark[2] = mark[3] = mark[5] = mark[7] = mark[11] = mark[13]…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3240 n 和 m 太过巨大,不难想到应该用费马小定理什么的来缩小范围: 总之就是推式子啦,看博客:https://blog.csdn.net/jiangshibiao/article/details/24594825 还有:https://www.cnblogs.com/iiyiyi/p/5617598.html 其实也蛮好推的,也挺好写,但我调了很久很久啊... 要十分注意取 mod 时…
考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉考试时间很不够用,一直在瞎yy+code,听讲题DeepinC 12min就打出了T150pts,这不仅是思维上的劣势,而且打代码的速度必须要加上来啊,不然就算有好想法也打不出来(也没啥好想法). 接下来就是正经八本的题解了: 首先我们可以来一波玄学复杂度分析,数据范围1e5,要么$O(nlogn)…
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m/i),再考虑减去不合法的对数. 不合法就是不互质,也就是还有别的公因数,即还能再除.直接算会重复,不如限定求出 gcd==j 的对数. 利用更大的 f [ ] 即可.在 n/i 和 m/i 的基础上 gcd==j 的对数就是 f [ i*j ].所以要倒推. #include<iostream>…
sequence 考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里 n平方的做法可以直接DP, 感觉有式子可言, 就推出式子:类似coat,每个长度为i的计算i次. 再容斥下: F是方案数,还是求: 枚举分成的段数,枚举多少个超过i进行容斥: 突破口:有个n-i*k-1,意味着i*k<=n,这样的i和k暴力枚举一共nlogn复杂度! 提出来,考虑干掉j 强行推式子: 处理: (怎么看怎么也看不出什么道理的样子) 来找组合意义吧: 有n-ik个球,我们先从中选出j个…
题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\(g(x)\) 是关于 \(x\) 的 \(k+2\) 次多项式.注意到此题 \(k\) 数据范围不过 \(10^2\) 级别,因此我们可以考虑把 \(g\) 多项式的系数插出来.我们代入 \(k+3\) 个点值 \(1,2,3,\cdots,k+3\),预处理出 \(\prod\limits_{i=…
洛谷题面传送门 首先推式子: \[\begin{aligned} ans&=\sum\limits_{i=A}^B\sum\limits_{j=1}^i\{\dfrac{i}{j}\} \end{aligned} \] 考虑差分,设 \[f(n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^i\{\dfrac{i}{j}\} \] 那么 \[ans=f(B)-f(A-1) \] 考虑如何计算 \(f(n)\): \[\begin{aligned} f(n)&=…
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 \(\text{lcm}\) 改为 \(\gcd\) 那么一遍莫比乌斯反演即可搞定,因此考虑将这里的 \(\text{lcm}\) 与 \(\gcd\) 联系在一起.那么什么能将这两个东西联系在一起呢?Min-Max 容斥,具体来说,考虑式子 \[\text{lcm}(S)=\prod\limits…
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{i}(\dfrac{1}{m})^i(\dfrac{m-1}{m})^{n-i}\\ &=\sum\limits_{i=0}^n\sum\limits_{j=1}^k\begin{Bmatrix}k\\j\end{Bmatrix}i^{\underline{j}}\dbinom{n}{i}(\dfra…
题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \(f(S)=\sum\limits_{T\subseteq S}\sum\limits_{T'\subseteq T}(-1)^{T-T'}f(T')\),证明可考虑计算每个 \(T'\) 的贡献,由于 \(T'\subseteq T\subseteq S\),\(T\) 必然是 \(T'\) 与 \…
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 \(a_i\) 如果它已经在前面出现了就不断给它加 \(1\) 直到它没有出现过为止.如果某个 \(a_i\) 超过了 \(n\) 则不符合条件,正确性显然.这样看起来还是有点抽象,我们不妨把它转化成这样的模型:有一架飞机有 \(n\) 个位置,有 \(n\) 个乘客要登飞机,每个乘客都预定了一个位置 \…
最主要的步骤是用 1式子和2式子推 3式子.(难点,看了很多博客最后的时候那个式子看不懂) 当n, m互质时即gcd(n, m) == 1,存在phi(n * m) = phi(m) * phi(n) 当m为素数且n%m == 0时,存在phi(n*m) = phi(n) * m 记  为S(n, m),存在S(n,m) = S(n/p, m) * (p – 1) + S(n, m/p) (其中p为素数) #include<bits/stdc++.h> #define LL long long…
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} - \sqrt{b})^{2F_n}] (mod p)$ 左边可以看出是欧拉判定准则,那么只有当a,b其中一个满足是模p下的非二次剩余时G()为0. 右边的式子可以先把平方放进去,发现这个已经是通项公式了,那么$a+b+\sqrt{ab}$和$a+b-\sqrt{ab}$就是它的特征根了,反代回二阶…
题目传送 推公式博客传送 推完式子就是去朴素地求就行了Orz const int maxn = 1e5 + 5; const int mod = 1e9 + 7; int m, mu[maxn], vis[maxn], primes[maxn], tot; ll dp[maxn]; vector<int> factor[maxn]; ll ksm(ll a, ll b) { ll ret = 1; for (; b; b >>= 1) { if (b & 1) ret =…
题面传送门 其实是一道还好的题罢,虽然做了我 2147483647(bushi,其实是 1.5h),估计也只是因为 HDU 不支持数据下载所以错误总 debug 出来 首先看到 \(10^9+9\) 及斐波那契数列,顿时心里一个激灵,这题和通项公式逃不掉了( 套用斐波那契数列通项公式 \(f_n=\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n)\) 得: \[\begin{aligned} \text…
A. Guest From the Past 题目连接: http://www.codeforces.com/contest/625/problem/A Description Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found hi…
Solution 非常巧妙的建立DP方程. 据dalao们说题目明显暗示根号复杂度??(反正我是没看出来 因为每次分的块大小一定不超过$\sqrt n$,要不然直接每个位置开一个块答案都才为$n$. 于是大佬们想到用一个非常巧妙的数组$pos[j]$,表示顺推到当前位置$i$时,以$i$作为右端点,区间出现了$j$个颜色的左端点的位置. 于是每次转移就变成了$dp[i]=min(dp[pos[j]-1]+j*j)$,而不需要把之前全部枚举.$j$的范围就是$<=\sqrt n$的. 所以每次新到…
做数论都做傻了,这道题目 有推荐,当时的分类放在了递推里面,然后我就不停的去推啊推啊,后来推出来了,可是小一点的数 输出答案都没问题,大一点的数 输出答案就是错的,实在是不知道为什么,后来又不停的看,突然有股傻眼的感觉,这个貌似很面善很面熟啊,不禁想起以前一到背包题目,也是给了具体数字 最大范围,最后使用背包来解决的,那么这道有些相似,后来翻了 背包九讲的PDF,我了个去,这不就是 完全背包么? 恨死!!!一定要牢牢记住!!! 有N种物品和一个容量为V的背包,每种物品都有无限件可用. 第i种物品…
题意:给一个向量W={w1,w2……,wn},和一个向量B,B的分量只能为1和-1.求||W-αB||²的最小值. 思路:一来一直在想距离的问题,想怎么改变每一维的值才能使这个向量的长度最小,最后无果. 看了题解说是推公式,并且将结果看作是方差,这样W中的负值可直接转化为正值,也即将B所有分量当作1(这里需要想一下),所以只需要看α,当结果为方差时最小,也即α为均值,根据||x||=√∑xi²,将平方项展开,观察思考一下应该可以化解为(n∑wi²-sum²)/n #include<iostrea…
题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\),m,p给定且p是一个质数.求\(\sum_{i=1}^{p-1}i*f(i)\),p<=1e9+7,m<=p-1 思路 我们考虑用原根去代换x,y. 设g为p的一个原根,\(g^a\equiv x(mod \ p),g^b \equiv y(mod \ p)\). 然后我们用\(g\)去代换\(x…
先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{j=1}^{n}j^im^j\) 然后貌似用一个叫扰动法(感觉就是错位相消法)的东西,算一下 \[(m-1)f(i)=\sum\limits_{j=1}^{n+1}(j-1)^im^j-\sum\limits_{i=1}^{n}j^im^j=n^im^{n+1}-\sum\limits_{j=1}^…
原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 \[i^k=\sum\limits_{j=0}^{i}\begin{Bmatrix} k\\ j \end{Bmatrix}j!\binom{i}{j}\] 代入可得 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}…
洛谷题面传送门 神仙题(为什么就没能自己想出来呢/zk/zk) 这是我 AC 的第 \(2\times 10^3\) 道题哦 首先考虑 \(m=2\) 的情况,我们首先可以想到一个非常 trivial 的 DP:\(dp_i\) 表示填好前 \(i\) 列的方案数,那么第 \(i\) 列显然有横着放和竖着放两种可能,方案数分别是 \(dp_{i-2}\) 和 \(dp_{i-1}\),因此我们有 \(dp_i=dp_{i-2}+dp_{i-1}\),边界条件 \(dp_0=1\),显然这个递推式…