CNN:卷积输出分辨率计算】的更多相关文章

卷积是CNN非常核心的操作,CNN主要就是通过卷积来实现特征提取的,在卷积操作的计算中会设计到几个概念:步长(strides).补充(padding).卷积核(kernel)等,那卷积的输出分辨率计算一般就会与这几个参数有关(空洞或者扩张卷积暂时不纳入这个范围),以下计算不做说明的话,均考虑卷积核大小为3*3.所以这一篇就以二维卷积为例子简单记录下卷积的一点计算公式. 以下以s代表步长,p代表补充,k代表卷积核.i代表输入分辨率.o代表输出分辨率,[]代表向下取整(因为公式编辑器里找不到向下取整…
上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractionally strided convolutions. 根据<A guide to convolution arithmetic for deep learning>的介绍的话,在进行卷积操作的时候我们是可以把卷积操作重写为以下的形式: 这个时候,输出是可以表示为 如果反向操作,输入为y的话,要得…
扩张卷积(Dilated convolutions)是另一种卷积操作,也叫做空洞卷积(Atrous convolution).相比于普通的卷积,相同的卷积核,空洞卷积能够拥有更大的感受野. 相同的卷积核,扩张卷积在计算的时候可以把卷积看成是按照一定值进行了扩张,以3*3的卷积核为例子,如果扩张系数为2的话,该卷积核在计算的时候就像是一个5*5的卷积核,如图所示: 图(a)可以看成是扩张系数为1的扩张卷积,起作用就跟普通的卷积一样,当扩张系数为2的时候,扩张卷积就编程图(b)的形式,但是实际计算的…
转自https://blog.csdn.net/u012370185/article/details/95238828 通常用外部api进行卷积的时候,会面临mode选择. 这三种mode的不同点:对卷积核移动范围的不同限制. 设 image的大小是7x7(橙色部分),filter的大小是3x3(蓝色部分) 1. full mode full mode:从filter和image刚相交开始做卷积,不足的部分padding 0.filter的运动范围如图所示. 2. same mode same…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten from keras.models import Model,Sequential from keras.datasets import mnist from keras.utils…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convolutional Neural Network, CNNs)时,往往会联想到计算机视觉.CNNs在图像分类领域做出了巨大贡献,也是当今绝大多数计算机视觉系统的核心技术,从Facebook的图像自动标签到自动驾驶汽车都在使用. 最近我们开始在自然语言处理(Natural Language Process…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 7: CNN 目录 一.CNN的引入 二.CNN的层次结构 三.CNN的小Demo加深对CNN的理解 四.CNN的特点 在学习本节课知识之前,先让我们来了解一下有关CNN的知识,让我们对CNN有一个大概的认知…