cb52a_c++_STL_堆排序算法make_push_pop_sort_heapheapsort堆排序算法make_heap()-特殊的二叉树,每一个节点都比根小,根就是最大的数.大根堆,也可以做成 小根堆寻找最大数,最大数排在最前面.或者寻找最小数,最小数排在最前面push_heap()pop_heap()sort_heap() 把vector做成像一个堆 /*cb52a_c++_STL_堆排序算法make_push_pop_sort_heap heapsort堆排序算法 make_hea…
堆排序算法 java 实现 白话经典算法系列之七 堆与堆排序 Java排序算法(三):堆排序 算法概念 堆排序(HeapSort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法,辅助空间为O(1), 最坏时间复杂度为O(nlog2n) ,堆排序的堆序的平均性能较接近于最坏性能. 算法思想 建立最小堆: 取出堆顶元素,顺序放到待排序数组中:将堆底元素放到堆顶,并重新调整堆: 重复步骤 2 ,直至堆中所有元素全部取完: 参考的…
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]…
在软件设计相关领域,“堆(Heap)”的概念主要涉及到两个方面: 一种是数据结构,逻辑上是一颗完全二叉树,存储上是一个数组对象(二叉堆). 另一种是垃圾收集存储区,是软件系统可以编程的内存区域. 本文所说的堆指的是前者,另外,这篇文章中堆中元素的值均以整形为例 堆排序的时间复杂度是O(nlog2n),与快速排序达到相同的时间复杂度. 但是在实际应用中,我们往往采用快速排序而不是堆排序. 这是因为快速排序的一个好的实现,往往比堆排序具有更好的表现. 堆排序的主要用途,是在形成和处理优先级队列方面.…
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]…
1. heapq堆排序算法 堆(heap)是一个树形数据结构,其中子节点与父节点有一种有序关系.二叉堆(binary heap)可以使用一个有组织的列表或数组表示,其中元素N的子元素位于2*N+1和2*N+2(索引从0开始).这种布局允许原地重新组织堆,从而不必再添加或删除元素时重新分配大量内存. 最大堆(max-heap)确保父节点大于或等于其两个子节点.最小堆(min-heap)要求父节点小于或等于其子节点.Python的heapq模块实现了一个最小堆. 1.1 创建堆 创建堆有两种基本方式…
阿里面试中有一道题是这样的: 请用JavaScript语言实现 sort 排序函数,要求:sort([5, 100, 6, 3, -12]) // 返回 [-12, 3, 5, 6, 100],如果你有多种解法,请阐述各种解法的思路及优缺点.(仅需用代码实现一种解法,其它解法用文字阐述思路即可) 那我们就来看一下各种解法的思路以及优缺点~ 简单排序 1冒泡法: 原理:对存放原始数据的数组,按从前往后的方向进行多次扫描,每次扫描称为一趟.当发现相邻两个数据的次序与要求的不同时,即将两个数据进行互换…
Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择对这个算法进行分析主要是因为它用到了一个非常有意思的算法技巧:数据结构 - 堆.而且堆排其实是一个看起来复杂其实并不复杂的排序算法,个人认为heapsort在机器学习中也有重要作用.这里重新详解下关于Heapsort的方方面面,也是为了自己巩固一下这方面知识,有可能和其他的文章有不同的入手点,如有错…
     堆积排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法,辅助空间为O(1), 最坏时间复杂度为O(nlog2n) ,堆排序的堆序的平均性能较接近于最坏性能. 中心思想是在使用数组存储的完全二叉树内从下往上每次构造大顶堆或者小顶堆,然后将找出来的堆顶数字放到数组结尾,剩下数组继续构造堆结构. 主要是参考了网上比较常见的两种堆排序的java实现,自己加了一些注释 实现1 采用递归,每次父节点与最大…
   基本概念: 二叉堆是完全二叉树或者是近似完全二叉树. 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆. 当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆. 一般将二叉堆简称为堆. 基本思想: 1.把n个元素建立最大堆,把堆顶元素A[0]与待排序序列的最后一个数据A[n-1]交换: 2.把剩下的n-1个元素重新建立最大堆,把堆顶元素A[0]与待排序序列的最后一个元素A[n-2]交换: 3.把剩下的n-2个元素重新建立最大堆,把堆顶元素A[0]与待排序序列的最后一个元素A…
原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多实践中的算法会用到它,比如经典的TopK算法.小顶堆用于实现优先级队列. 堆排序是利用堆这种数据结构所设计的一种排序算法.堆实际上是一个完全二叉树结构. 问:那么什么是完全二叉树呢? 答:假设一个二叉树的深度为h,除第 h 层外,其它各层 (1-h-1) 的结点数都达到最大个数,第 h 层所有的结点…
更新2019年11月4日 04:26:35 睡不着觉起来寻思寻思干点啥吧,好像好久没写堆排了.于是写了个索引从0开始的堆排,这次把建堆函数略了并在heapsort主函数里,索引从0开始到size-1结束,长度size. 这个堆排和索引从1开始的堆排区别就是对于节点i,两个子节点分别为2i+1和2i+2.另外建堆时从索引size/2-1开始倒序维护大顶堆.下面证明下这个起始索引的节点一定对应着二叉树的最后的一个或两个叶子节点. 1.siz是偶数,那么最后一个内部节点只有左子树.siz/2-1乘2等…
本文从树数据结构说到二叉堆数据结构,再使用二叉堆的有序性对无序数列排序. 1. 树 树是最基本的数据结构,可以用树映射现实世界中一对多的群体关系.如公司的组织结构.网页中标签之间的关系.操作系统中文件与目录结构--都可以用树结构描述. 树是由结点以及结点之间的关系所构成的集合.关于树结构的更多概念不是本文的主要内容,本文只关心树数据结构中的几个特殊变种: 二叉树 如果树中的任意结点(除叶子结点外)最多只有两个子结点,这样的树称为二叉树. 满二叉树 如果 二叉树中任意结点(除叶子结点外)都有 2…
堆排序分为两个过程: 1.建堆. 堆实质上是完全二叉树,必须满足:树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字. 堆分为:大根堆和小根堆,升序排序采用大根堆,降序排序采用小根堆. 如果是大根堆,则通过调整函数将值最大的节点调整至堆根. 2.将堆根保存于尾部,并对剩余序列调用调整函数,调整完成后,再将最大跟保存于尾部-1(-1,-2,...,-i),再对剩余序列进行调整,反复进行该过程,直至排序完成. 以下代码在nodejs中执行通过 //调整函数function…
#-*- coding: UTF-8 -*- import numpy as np def MakeHeap(a): for i in xrange(a.size / 2 - 1, -1, -1):#对非叶子节点的子节点进行调节,构建堆 AdjustHeap(a, i, a.size) def AdjustHeap(a, i, n): j = i*2 +1 #选择节点i的左子节点 x = a[i] #选择节点的数值 while j < n: #循环对子节点及其子树进行调整 if j + 1 <…
以下是个人写的堆排序代码,原理我就不解释了(简单来说就是先建立一个大顶堆,然后进行顶点和最后节点的互换,互换之后需要重新建堆,两两比对,具体的话可以参照其他的,不过代码还是会于注释的. #根据问题进行编码,由于数组下标是从0开始的,而树的节点从1开始,我们还需要引入一个辅助位置,Python提供的原始数据类型list实际上是一个线性(Array), #由于我们需要在序列最左边追加一个辅助位,线性表这样做的话开销很大,需要把数组整体向右移动,所以list类型没有提供形如appendleft的函数,…
堆满足的条件:1,是一颗完全二叉树.2,大根堆:父节点大于各个孩子节点.每个节点都满足这个道理.小根堆同理. parent = (i-1)/2    #i为当前节点 left = 2*i+1 right = 2*i + 2 堆可以分为大根堆和小根堆,这里用大根堆的情况来定义操作:(1)大根堆调整(max_heapify):将堆的末端子节点作调整,使得子节点永远小于父节点.这是核心步骤,在建堆和堆排序都会用到.比较i的根节点和与其所对应i的孩子节点的值,当i根节点的值比左孩子节点的值要小的时候,就…
将待排序的序列构造成一个大顶堆(从大到小排要构造成小顶堆).此时,整个序列的最大值就是堆顶的根节点,将他和末尾元素交换,然后将剩余的length-1个节点序列重新构造成新的堆.重复执行,便能得到一个有序序列. package sort; public class HeapSort { static void heapSort(int []a,int len){ int i; for(i=len/2;i>=0;i--){ /*把a[]构造成一个大顶堆*/ HeapAdjust(a,i,len);…
1. 预备知识 (1) 基本概念     如图,(二叉)堆是一个数组,它可以被看成一个近似的完全二叉树.树中的每一个结点对应数组中的一个元素.除了最底层外,该树是完全充满的,而且从左向右填充.堆的数组A包括两个属性:A.length给出了数组的长度:A.heap-size表示有多少个堆元素保存在该数组中(因为A中可能只有部分位置存放的是堆的有效元素).     由于堆的这种特殊的结构,我们可以很容易根据一个结点的下标i计算出它的父节点.左孩子.右孩子的下标.计算公式如下: parent(i) =…
排序算法系列学习,主要描述冒泡排序,选择排序,直接插入排序,希尔排序,堆排序,归并排序,快速排序等排序进行分析. 文章规划: 一.通过自己对排序算法本身的理解,对每个方法写个小测试程序.具体思路分析不展开描述. 二.通过<大话数据结构>一书的截图,详细分析该算法. 在此,推荐下程杰老师的<大话数据结构>一书,当然不是打广告,只是以一名读者的身份来客观的看待这本书,确实是通俗易懂,值得一看. ps:一个较为详细的学习链接   http://blog.csdn.net/guo_hong…
堆排序 堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆(也叫最大堆):或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆(也叫最小堆). 最小堆和最大堆如下图示: 可以发现:根结点一定是堆中所有结点最大(小)者. 堆排序的基本思想(以大顶堆为例):将待排序的序列构成一个大顶堆.此时,整个序列的最大值就是堆顶的根结点.将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的 n-1 个序列重新构成一个堆,这样就会得到 n 个…
堆排序 第7节 堆排序练习题 对于一个int数组,请编写一个堆排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3],6 [1,2,2,3,3,5]   Java (javac 1.7) 代码自动补全           1 import java.util.*; 2 3 public class HeapSort { 4 public int[] heapSort(int[] A, int n) { 5 int lastIn…
参考博客:基于python的七种经典排序算法     常用排序算法总结(一) 序前传 - 树与二叉树 树是一种很常见的非线性的数据结构,称为树形结构,简称树.所谓数据结构就是一组数据的集合连同它们的储存关系和对它们的操作方法.树形结构就像自然界的一颗树的构造一样,有一个根和若干个树枝和树叶.根或主干是第一层的,从主干长出的分枝是第二层的,一层一层直到最后,末端的没有分支的结点叫做叶子,所以树形结构是一个层次结构.在<数据结构>中,则用人类的血统关系来命名,一个结点的分枝叫做该结点的"…
堆排序 在学习了二叉堆(优先队列)以后,我们来看看堆排序.堆排序总的运行时间为O(NlonN). 堆的概念 堆是以数组作为存储结构. 可以看出,它们满足以下规律: 设当前元素在数组中以R[i]表示,那么(下标从0开始), (1) 它的左孩子结点是:R[2*i+1]; (2) 它的右孩子结点是:R[2*i+2]; (3) 它的父结点是:R[(i-1)/2]; (4) R[i] <= R[2*i+1] 且 R[i] <= R[2i+2]. (5)最后一个父节点是N/2-1;(构建堆要从这里开始下滤…
堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆). 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的.如: (a)大顶堆序列:(96, 83,27,38,11,09) (b)  小顶堆序列:(12,36,24,85,47,30,53,91…
算法,是系统软件开发,甚至是搞软件的技术人士的核心竞争力,这一点,我坚信不疑.践行算法实践,已经有一段时间没有practise了,今天来一个相对麻烦点的,堆排序. 1. 什么是堆(Heap) 这里说的堆,是一种数据结构,不是指计算机系统中的存储类型.堆是一种完全二叉树.说到完全二叉树,估计很多人都会想问,什么是完全二叉树,那满二叉树呢?先看看定义完全二叉树和满二叉树: 满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点.在满二叉树中,每一层上的结点数都达到最大值,即在满…
堆排序是利用堆进行排序的高效算法,其能实现O(NlogN)的排序时间复杂度,详细算法分析能够点击堆排序算法时间复杂度分析. 算法实现: 调整堆: void sort::sink(int* a, const int root, const int end) { int i=root; while(2*i +1 <= end) { int k = 2*i+1; if(k+1<=end && a[k]<a[k+1]) k++; if(a[k] < a[i]) break;…
序 本文主要介绍堆排序算法(HeapSort),堆排序像合并排序而不像插入排序,堆排序的运行时间为O(nlgn):像插入排序而不像合并排序,它是一种原地(in place)排序算法.在任何时候,数组中只有常数个元素存储在输入数组以外,这样,堆排序就把插入排序和合并排序的优点结合起来. 堆排序还引入了另外一种算法设计技术,利用某种数据结构(在此算法中为"堆")来管理算法执行中的信息.堆数据结构不只在堆排序算法中有用,还可以构成一个有效的优先队列.堆数据结构是一种数组对象,它可以被视为一颗…
6.1堆 卫星数据:一个带排序的的数通常是有一个称为记录的数据集组成的,每一个记录有一个关键字key,记录的其他数据称为卫星数据. 原地排序:在排序输入数组时,只有常数个元素被存放到数组以外的空间中去. 在第二章介绍了两种排序:插入排序和合并排序,接下来两章要介绍的是推排序和快速排序,这四个排序都属于比较排序(comparison sort). 快速排序的性能一般优先于堆排序 二叉堆是一个数组(b),近似完全二叉树(a) 数组(b) 实际的存储形势 二叉树(a) 要表达的结构 [1,A.heap…
选择排序的基本思想 每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,知道所有记录排序完毕.主要有两种选择排序方法:直接选择排序(或称简单选择排序)和堆排序. 直接选择排序 基本思想 第i趟排序開始时,当前有序区和无序区分别为R[1 -- i-1]和R[i -- n](1 <= i <= n-1),该趟排序则是从当前无序区中选出关键字最小的记录R[k],将它与无序区的第一个记录R[i]交换,使R[1 -- i]和R[i+1 -- n]分别变为新的有序区和新的无序区.…