四分位数与pandas中的quantile函数】的更多相关文章

四分位数与pandas中的quantile函数 1.分位数概念 统计学上的有分位数这个概念,一般用p来表示.原则上p是可以取0到1之间的任意值的.但是有一个四分位数是p分位数中较为有名的. 所谓四分位数:即把数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数. 为了更一般化,在计算的过程中,我们考虑p分位.当p=0.25 0.5 0.75 时,就是在计算四分位数. 第1四分位数 (Q1),又称"较小四分位数",等于该样本中所有数值由小到大排列后第25%的数字. 第2四分…
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’) 参数 - q : float or array-like, default 0.5 (50% quantile 即中位数-第2四分位数) 0 <= q <= 1, the quantile(s) to compute - axis : {0, 1, ‘index’,…
https://blog.csdn.net/weixin_38617311/article/details/87893168 data.price.quantile([0.25,0.5,0.75]) //输出 0.25 42812.25 0.50 57473.00 0.75 76099.75 quantile 英文意思 分位数…
参考链接:https://www.makcyun.top/web_scraping_withpython2.html #!/usr/bin/env python # -*- coding: utf-8 -*- from multiprocessing.pool import Pool import pandas as pd import requests from sqlalchemy import create_engine # 数据库相关信息 HOSTNAME = '127.0.0.1' P…
从网上看到一篇好的文章是关于如何学习python数据分析的迫不及待想要分享给大家,大家也可以点链接看原博客.希望对大家的学习有帮助. 本次的Python学习教程是关于Python数据分析实战基础相关内容,本文主要讲的是Pandas中第二好用的函数——谦虚的apply. 为什么说第二好用呢?那第一呢?秉承这谦虚使人进步,骄傲使人落后的品质,apply选择做一个谦虚又优雅的函数. 我们单独用一篇来为apply树碑立传,原因有二,一是因为apply函数极其灵活高效,甚至是重新定义了pandas的灵活,…
import numpy as np import pandas as pd 聚合函数 Aggregations refer to any data transformation that produces scalar values from arrays(输入是数组, 输出是标量值). The preceding examples have used several of them, including mean, count, min, and sum You may wonder wha…
目录 1  分组操作 1.1  按照列进行分组 1.2  按照字典进行分组 1.3  根据函数进行分组 1.4  按照list组合 1.5  按照索引级别进行分组 2  分组运算 2.1  agg 2.2  transform 2.3  apply 3  利用groupby技术多进程处理DataFrame 我们在这里要讲一个很常用的技术, 就是所谓的分组技术, 这个在数据库中是非常常用的, 要去求某些分组的统计量, 那么我们需要知道在pandas里面, 这些分组技术是怎么实现的. 分组操作 我们…
  昨天晚上,笔者有幸参加了一场面试,有一个环节就是现场编程!题目如下:   示例数据如下,求每名学生(ID)对应的成绩(score)最高的那门科目(class)与ID,用Python实现: 这个题目看上去很简单,其实,并不简单.即要求输出形式如下:   当然,我们一开始能先到的是利用Pandas中的groupby,按ID做groupby,按score取最大值,可是之后的过程就难办了,是将得到的结果与原表做join,还是再想其他办法?   怎么办?答案就是Pandas中groupby的官方文档说…
1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.nan + 2 # 值仍然是nan 1.2 np.nan(NaN) 数组直接运算会得到nan,但可以使用np.nansum()函数来计算nan,此时视nan为0. ndarr = np.array([1,2,3,np.nan]) np.sum(ndarr) np.nansum(ndarr) Serie…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…