强化学习基础: 注: 在强化学习中  奖励函数和状态转移函数都是未知的,之所以有已知模型的强化学习解法是指使用采样估计的方式估计出奖励函数和状态转移函数,然后将强化学习问题转换为可以使用动态规划求解的已知模型问题. 强化学习问题由于采用了MDP数学形式来构建的,由此贝尔曼方程式是我们最常用的,如下: 基础知识可参考: https://www.cnblogs.com/devilmaycry812839668/p/10306175.html =============================…
中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种“basis”: 从图9可以引出另外一种理解,也可以将Attention机制看作一种软寻址(SoftAddressing):Source可以看作存储器内存储的内容,元素由地址Key和值Value组成,当前有个Key=Query的查询,目的是取出存储器中对应的Value值,即Attention数值.通过Quer…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被提出.BN 是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN 及一系列改进 Normaliza…
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被…
用户建模 一. User 模型 实现用户注册功能的第一步是,创建一个数据结构,用于存取用户的信息. 在 Rails 中,数据模型的默认数据结构叫模型(model,MVC 中的 M).Rails 为解决数据持久化提供的默认解决方案是,使用数据库存储需要长期使用的数据.与数据库交互默认使用的是 ActiveRecord.Active Record 提供了一系列方法,无需使用关系数据库所用的结构化查询语言(Structured QueryLanguage,简称 SQL),就能创建.保存和查询数据对象.…
参考资料:https://msdn.microsoft.com/zh-cn/library/dd456847(v=vs.110).aspx http://stackoverflow.com/questions/12481868/how-to-use-scalar-valued-function-with-linq-to-entity 1.首先修改edmx里添加的这个<Function>,将IsComposable属性改为false,去掉ReturnType属性,然后添加子节点<Comma…
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显.如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小. ​ 针对解决稀疏奖励问题的研究主要包括:1 Reward Shaping:奖励设计与学习 经验回放机制 探索与利用 多目标学习和辅助任务 1. Reward Shaping 人为设计的 "密…
VS2010 C++学习(5):基于DirectShow的视频 预览录像程序 学习VC++编制的基于DirectShow视频捕获程序,主要练习基于DirectShow程序的应用. 一.           主要内容: 1.        基于DirectShow视频预览: 2.        基于DirectShow视频录像: 二.           设计实现: (一).安装DirectShow 首先我们安装DirectShow SDK,由于现在directShow没有和direcxtx一起发…
本系列强化学习内容来源自对David Silver课程的学习 课程链接http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 本文介绍了在model-free情况下(即不知道回报Rs和状态转移矩阵Pss'),如何进行prediction,即预测当前policy的state-value function v(s)从而得知此policy的好坏,和进行control,即找出最优policy(即求出q*(s, a),这样π*(a|s)就可以立刻…