传送门:洛谷 题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$. 数据范围:$n\leq 50000,k\leq 150$ 这道题,看见$k$次方和就直接上斯特林数. $$S(x)=\sum_{i=0}^ki!S(k,i)\sum_{y=1}^nC_{dis(x,y)}^i$$ 然后我们考虑求最后一项. 设$$up_{x,t}=\sum_{y\notin x}C_{dis(x,y)}^t,dn_{x,t}=\sum_{y…