矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是0的n x n的矩阵. 逆矩阵的唯一性: 逆矩阵是像实数的倒数一样唯一存在的么?我们不妨简单地证明一下.假设A的两个逆矩阵是B,C.根据定义我们有AB=I,AC=I,结合基本的矩阵运算法则,容易看到B=C=IA^-1,由此能够看到逆矩阵是唯一存在的. 或者我们可以从代数系统的角度去审视矩阵及其运算,…