NOIP 2013 day2】的更多相关文章

题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的: 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的: 有些棋子是固定的,有些棋子则是可以移动的: 任何与空白的格子相邻(有公共的边)的格子上…
tags: 模拟 贪心 搜索 动态规划 categories: 信息学竞赛 总结 积木大赛 花匠 华容道 积木大赛 Solution 发现如果一段先单调上升然后在单调下降, 那么这一块的代价是最高的减去前面已经铺好的, 例如 6 5 6 7 8 9 8 7 6 5 需要先先铺6 5代价是6, 然后铺67898765, 代价是9-5. 根据这个这个就是记录一个已经铺好的最大值, 然后如果比已经铺好的大就加入答案并且更新已经铺好的. Code #include<cstdio> int main()…
NOIP 2013 货车运输[树链剖分] 树链剖分 题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物. 输入描述 Input Description 第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路.接下来 m 行每行 3 个整数 x.y.z,每两个整数之间用一个空格隔开,表示…
Luogu 1979 NOIP 2013 华容道(搜索,最短路径) Description 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的: 在一个 nm 棋盘上有 nm 个格子,其中有且只有一个格子是空白的,其余 nm-1个格子上每个格子上有一个棋子,每个棋子的大小都是 11 的: 有些棋子是固定的,有些棋子…
[Noip 2013 Day1-3] 货车运输 做法总结 Online Judge:Luogu-1967 Label:启发式合并,离线,整体二分,按秩合并,倍增,最大生成树 打模拟离线赛时做到,顺便总结一下. 一.启发式合并 离线询问,将询问存在端点上.将每条边按照权值从大到小排列. 依照刚才的顺序依次连上这m条边,利用并查集维护图的连通性.合并时采用启发式合并的思维--将所含元素较小的集合连上较大的集合.对于那个较小的集合,我们直接暴力遍历其中的每个点,再暴力回答那个节点上的询问. 总的时间复…
  积木大赛 描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为 n 的大厦,大厦可以看成由 n 块宽度为1的积木组成,第…
积木大赛: 之前没有仔细地想,然后就直接暴力一点(骗点分),去扫每一高度,连到一起的个数,于是2组超时 先把暴力程序贴上来(可以当对拍机) #include<iostream> #include<cstdio> using namespace std; FILE *fin = fopen("block.in","r"); FILE *fout= fopen("block.out","w"); int *…
http://codevs.cn/problem/3290/ 据说2013年的noip非常难,但Purpleslz学长还是AK了.能A掉这道题真心orz. 设状态$(i,j,k)$表示目标棋子在$(i,j)$这个位置,空格在紧贴着目标棋子的$k$方向,$0≤k<4$. 因为目标棋子要移动,空格肯定在它旁边.往空格的方向走一步,空格便出现在它另一边.对于这两个状态连边,边权为1. 为了使目标棋子向某一方向移动,需要目标棋子不动,空格从紧贴着目标棋子的某一方向移动到紧贴着目标棋子的另一个方向.对于固…
tags: 扩展欧几里得 二分答案 查分 倍增 二分答案 贪心 NOIP categories: 信息学竞赛 总结 同余方程 借教室 疫情控制 同余方程 Solution 首先同余式可以转化为等式. \[ax\equiv 1\mod b\Leftrightarrow ax+by=1\] 根据扩展欧几里得定理, 对于式 \[ax+by=k(a,b),k\in \mathbf{R}\]一定存在整数解.然而题面说一定存在解, 也就是说\((a,b)=1\), 然后就可以利用扩展欧几里得递归求得一组解.…
tags: 贪心 模拟 NOIP categories: 信息学竞赛 总结 计算系数 Solution 根据二项式定理, \[ \begin{align} (a+b)^n=\sum_{k=0}^nC_{n}^{k}a^kb^{n-k} \end{align} \] 那么 \[ \begin{align}(ax+by)^k=&\sum_{p=0}^kC_{k}^p(ax)^p(by)^{k-p}\\ =&\sum_{p=0}^k(C_{k}^pa^pb^{k-p})x^py^{k-p} \e…