深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程. 第二个思路是CNN层,其实CNN的方案也是很自然的,窗口式遍历,比如尺寸为3的卷积,就是 在FaceBook的论文中,纯粹使用卷积也完成了Seq2Seq的学习,是卷积的一个精致且极致的使用案例,CNN方便并行,而且容易捕捉到一些全局的结构信息…