Keras实现autoencoder】的更多相关文章

Keras使我们搭建神经网络变得异常简单,之前我们使用了Sequential来搭建LSTM:keras实现LSTM. 我们要使用Keras的functional API搭建更加灵活的网络结构,比如说本文的autoencoder,关于autoencoder的介绍可以在这里找到:deep autoencoder. 现在我们就开始. step 0 导入需要的包 import keras from keras.layers import Dense, Input from keras.datasets…
import keras import matplotlib.pyplot as plt from keras.datasets import mnist (x_train, _), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 x_train = x_train.reshape(x_train.shape…
# -*- coding: utf-8 -*- """ Auto Encoder Example. Using an auto encoder on MNIST handwritten digits. References: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceeding…
Autoencoder 自编码 压缩与解压 原来有时神经网络要接受大量的输入信息, 比如输入信息是高清图片时, 输入信息量可能达到上千万, 让神经网络直接从上千万个信息源中学习是一件很吃力的工作. 所以, 何不压缩一下, 提取出原图片中的最具代表性的信息, 缩减输入信息量, 再把缩减过后的信息放进神经网络学习. 这样学习起来就简单轻松了. 所以, 自编码就能在这时发挥作用. 通过将原数据白色的X 压缩, 解压 成黑色的X, 然后通过对比黑白 X ,求出预测误差, 进行反向传递, 逐步提升自编码的…
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None) 这是一个用于构建很常见的自动编码模型.如果参数output_reconstruction=True,那么dim(input)=dim(output):否则dim(output)=dim(hidden). inputshape: 取决于encoder的定义 ou…
import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Input import matplotlib.pyplot as plt (x_train,y_train),(x_test,y_test) = mnist.load_data() x_train = x_train.asty…
https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural-networks/ https://blog.keras.io/building-autoencoders-in-keras.html https://www.kaggle.com/atom1231/keras-autoencoder-with-simple-cnn-kfold4-lb-1704 https://datasci…
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c…
原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一.什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法,其中数据的压缩和解压缩函数是数据相关的.有损的.从样本中自动学习的.在大部分提到自动编码器的场合,压缩和解压缩的函数是通过神经网络实现的.1)自动编码器是数据相关的(data-specific 或 data-dependent),这意味着自动编码器只能压缩那些与训练数据类似的数据.比如,使用人脸训练…
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: Intuition and Implementation There are two generative models facing neck to neck in the data generation business right now: Generative Adversarial Nets…