Manifold Learning: ISOMAP】的更多相关文章

转:http://hi.baidu.com/chb_seaok/item/faa54786a3ddd1d7d1f8cd0b 在常见的降维方法中,PCA和LDA是最为常用的两种降维方法.PCA是一种无监督方法,它关注的是将数据沿着方差最大化的方向映射.而LDA是一种监督方法,它寻找映射轴(类之间耦合度低,类内的聚合度高),两种方法估计的都是全局的统计信息(均值和协方差). manifold learning是最近比较热门的领域,它是一种非线性降维技术,主要研究的是高维数据的潜在的流行结构.首先我们…
原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化.它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律.流形学习方法是模式识别中的基本方法,分为线性流形学习算法和非线性流形学习算法,线性方法就是传统的方法如主成分分析(PCA)和线性判别分析(LDA)…
我恨自己不干活儿,不过也没辙. 早晚要学习流形的,今天先转一篇文章,以后找不到就尿了. 我真羡慕数学系的人,╮(╯▽╰)╭. 发信人: Kordan (K&M), 信区: AI标  题: dodo:流形学习 (manifold learning)(zz)发信站: 水木社区 (Sun Sep 30 16:02:07 2007), 站内 zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流…
流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流形学习是个很广泛的概念.这里我主要谈的是自从2000年以后形成的流形学习概念和其主要代表方法.自从2000年以后,流形学习被认为属于非线性降维的一个分支.众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Lin…
Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多.我们来看一看 Machine Learning 的典型的流程就知道了,其实有时候觉得和应用数学或者更通俗的数学建模有些类似,通常我们会有需要分析或者处理的数据,根据一些经验和一些假设,我们可以构建一个模型,这个模型会有一些参数(即使是非参数化方法,也是可以类似地看待的),根据数据来求解模型参数的过程…
流形学习(manifold learning)的一些综述 讨论与进展 issue 26 https://github.com/memect/hao/issues/26 Introduction http://blog.sina.com.cn/s/blog_eccca60e0101h1d6.html @cmdyz 流形学习 (Manifold Learning) http://blog.pluskid.org/?p=533 浅谈流形学习 http://blog.csdn.net/chl033/ar…
1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示.所以直观上来讲,一个流形好比是一个$d$维的空间,在一个$m$维的空间中$(m > d)$被扭曲之后的结果.需要注意的是流形并不是一个形状,而是一个空间.举个例子来说,比如说一块布,可以把它看成一个二维的平面,这是一个二维的空间,现在我们把它扭一扭(三维空间),它就变成了一个流形,当然不扭的时候,…
1. t-SNE from sklearn.manifold import TSNE X_proj = TSNE(random_state=123).fit_transform(X) 2. t_sne _joint_probabilities _joint_probabilities(distances, desired_perplexity, verbose) Compute joint probabilities p_ij from distances. _kl_divergence _kl…
MDS, multidimensional scaling, 线性降维方法, 目的就是使得降维之后的点两两之间的距离尽量不变(也就是和在原是空间中对应的两个点之间的距离要差不多).只是 MDS 是针对欧氏空间设计的,对于距离的计算也是使用欧氏距离来完成的.如果数据分布在一个流形上的话,欧氏距离就不适用了. 1. 所谓 Machine Learning 里的 Learning ,就是在建立一个模型之后,通过给定数据来求解模型参数. 2. Riemannian geometry; from here…
流行-Manifold[1]  流形,也就是 Manifold . 1. 比较好的形象理解 流形学习的观点是认为,我们所能观察到的数据实际上是由一个低维流形映射到高维空间上的,即这些数据所在的空间是“嵌入在高维空间的低维流形.”.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上只需要比较低的维度就能唯一地表示. 举个例子,比如说我们在平面上有个圆,如何表示这个圆呢?如果我们把圆放在一个平面直角坐标系中,那一个圆实际上就是由一堆二维点构成的. 比如一个单位圆:(1,0) 是一个在…
现状: 1. 目前大家对于大部分需求,通常采用multiple layer,units in each layer也是人工订好的(虽然可以做稀疏,但是在same layer范围内竞争). 2. 网络结构(或connection paradigm)常用的有3种: DNN(或DBN)中full connection,各个weight独立看待: CNN中part connection(translation or scale)in same convolution,weight有group的概念,同g…
动人的DL我们有六个月的时间,积累了一定的经验,实验,也DL有了一些自己的想法和理解.曾经想扩大和加深DL相关方面的一些知识. 然后看到了一个MIT按有关的对出版物DL图书http://www.iro.umontreal.ca/~bengioy/dlbook/,所以就有了读一下这本书然后做点笔记攒点知识量的念头.这一系列的博客将是笔记型的,有什么写的不好之处还望广大博友见谅,也欢迎各位同行能指点一二. 这是本书的第一章,下面是个人感觉蛮重要的一些点: logistic regression ca…
这次突然打算写点dimension reduction的东西, 虽然可以从PCA, manifold learning之类的东西开始, 但很难用那些东西说出好玩的东西. 这次选择的是一个不太出名但很有趣的方法, 随机映射. 但某些地方它一直是被当成LSH方法来介绍的, 关于这点我不想过多追究, 这里我认为他是一个降维. Problem Statement 首先我们来看一个问题, 如果你手头有一组数据$X \in R^n$, 它的维数太高, 从而不得不进行降维至$R^k$, 你会怎么办? 相信不少…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizona, USA ICLR 2013 Workshop Track Accepted for Oral Presentation Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Hamsa Sr…
局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法.和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域.下面我们就对LLE的原理做一个总结. 1. 流形学习概述 LLE属于流形学习(Manifold Learning)的一种.因此我们首先看看什么是流形学习.流形学习是一大类基于流形的框架.数学意义上的流形比较抽象,不…
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高…
PlayGround.http://playground.tensorflow.org .教学目的简单神经网络在线演示.实验图形化平台.可视化神经网络训练过程.在浏览器训练神经网络.界面,数据(DATA).特征(FEATURES).神经网络隐藏层(HIDDEN LAYERS).层中连接线.输出(OUTPUT). 数据.二维平面,蓝色正值,黄色负值.数据形态,圆形.异或.高斯.螺旋.数据配置,调整噪声(noise)大小,改变训练.测试数据比例(ratio),调整入输入每批(batch)数据数量1-…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
[转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型的过程称为模型选择(Model Selection).模型选择的目的只是选择模型的形式,而模型的参数是未定的. 从数据中获得具体规律的过程称为训练或学习,训练的过程就是根据数据来对选定的模型进行参数调节(Parameter Estimation)的过程,此过程中使用的数据为训练数据集(Trainin…
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications…
感觉 好博客要收集,还是贴在自己空间里难忘!!! 原文链接:http://blog.csdn.net/hitwengqi/article/details/7907366 http://people.cs.uchicago.edu/~niyogi/ http://www.cs.uchicago.edu/people/ http://pages.cs.wisc.edu/~jerryzhu/ http://www.kyb.tuebingen.mpg.de/~chapelle http://people…
很多原理性的东西需要有基础性的理解,还是篇幅过少,所以讲解的不是特别的清晰. 原文链接:http://blog.sciencenet.cn/blog-722391-583413.html 流形(manifold)的概念最早是在1854年由 Riemann 提出的(德文Mannigfaltigkeit),现代使用的流形定义则是由 Hermann Weyl 在1913年给出的. 流形(Manifold),一般可以认为是局部具有欧氏空间性质的拓扑空间.而实际上欧氏空间就是流形最简单的实例.像地球表面这…
转自:http://blog.csdn.net/u012162613/article/details/45920827 1.流形学习的概念 流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志<Science>被首次提出以来,已成为信息科学领域的研究热点.在理论和应用上,流形学习方法都具有重要的研究意义. 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以…
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾名思义数据中不包含已知的输出结果,学习算法中只有输入数据,算法需要从这些输入数据中提取相关规律.无监督学习主要分为两种类型:数据集变换与聚类算法,数据集的无监督变换是创建数据集的新的表达方式,使其特性更容易理解,最常见的模型有 PCA.NMF.t-SNE 等模型.聚类算法则是将数据划分成不同的组,每组数据中包…
论文题目:<Nonlinear Dimensionality Reduction by Locally Linear Embedding > 发表时间:Science  2000 论文地址:Download 简介 局部线性嵌入(Locally Linear Embedding,简称LLE)重要的降维方法. 传统的 PCA,LDA 等方法是关注样本方差的降维方法,LLE 关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,所以广泛用于图像图像识别,高维数据可视化等领域.…
在上一节介绍了一种最常见的降维方法PCA,本节介绍另一种降维方法LLE,本来打算对于其他降维算法一并进行一个简介,不过既然看到这里了,就对这些算法做一个相对详细的学习吧. 0.流形学习简介 在前面PCA中说到,PCA是一种无法将数据进行拉直,当直接对于曲面进行降维后,导致数据的重叠,难以区分,如下图所示: 这是因为在使用PCA降维时,PCA仅仅关注于保持降维后的方差最大,没有考虑样本的局部特征,如图所示: 利用PCA在对点①进行降维后,没有考虑点①与其他点②.③.④..的位置关系,也就是说对于点…
PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) 卷起 弄皱 (三维).二维流形 嵌入到一个三维空间, 就不再是线性的了. 流形方法技巧: 多维标度法 multidimensional scaling MSD 局部线性嵌入法 locally linear embedding LLE 保距映射法 isometric mapping Isomap 流…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…