决策树的基本认识 决策树学习是应用最广的归纳推理算法之一,是一种逼近离散值函数的方法,年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它的信息熵就越高.所以信息熵可以被认为是系统有序化程度的一个度量. 假如一个随机变量的取值为,每一种取到的概率分别是,那么 的熵定义为 意思是一个变量的变化情况可能越多,那么它携带的信息量就越大. 对于分类系统来说,类别是变量,它的取值是,而每一个类别出现的概率分别是 而这里的就是类别的总数,此时分类…