令$d=\gcd(n,m)$,存在$x$和$y$使得$xn+i=ym+j$的充要条件是$i\equiv j(mod \ d)$,因此将$xd+i$(其中$0\le i<d$)作为一组,共有$d$组,根据上述结论任意两组之间相互独立 若一组中没有快乐的人,由于独立性必然无解,即有解需要$且\forall 0\le i<d,\exists t\in x\cup y且t\equiv i(mod\ d)$,必要条件为$d\le b+g$(以下记$b+g$为$N$来表示复杂度),因此可以对每一组分别求出…