你已经知道怎样定义神经网络,计算损失和更新网络权重.现在你可能会想, 那么,数据呢? 通常,当你需要解决有关图像.文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy array.然后将其转换为 torch.Tensor. 对于图像,例如Pillow,OpenCV 对于音频,例如scipy和librosa 对于文本,原生Python或基于Cython的加载,或NLTK和SpaCy 针对视觉领域,我们创建了一个名为 torchvision 的包,拥有用于ImageNet.C…