1 简介 本文着眼于对Weisfeiler-Lehman算法(WL Test)和WL-GNN模型的分析,针对于WL测试以及WL-GNN所不能解决的环形跳跃连接图(circulant skip link graph)进行研究,并提出了一种基于相对池化的方法,有助于GNN学习到结点之间的相对关系,该方法可以较好地融入到较为通用的神经网络模型中(如CNN.RNN等),使得WL-GNN具有更强大的表征能力. 2 准备知识 2.1 WL Test及其问题 Weisfeiler-Lehman如下所示: 对于…