BUG 记录:移位运算与扩展欧几里得算法 起因 上个月就开始打算用C++写一个ECC的轮子(为什么?折磨自己呗!),奈何自己水平有点差,拖到现在才算写完底层的大数运算.在实现欧几里得算法的时候,我开始纠结了... 欧几里得算法的两种实现 耳熟能详的实现方案 这个实现只要了解过欧几里得算法的同学都很清楚,我把维基百科上的代码粘贴到这里,最开始我也是按照这样的方式写出来的代码,没过几个测试,bug就出来了. def ext_euclid(a, b): old_s,s=1,0 old_t,t=0,1…
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a positive integer n that is a product of two distinct odd primes p and q, a positive integer e such that gcd(e, (p-1)*(q-1)) = 1, and an integer c, fi…
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)(a,b的最大公约数). 其核心内容可以陈述为:\((a,b)=(b,a\%b)\),然后反复迭代该式缩小\(a,b\)规模,直到\(b=0\),得到a为最大公约数. 证明 设两数为\(a\ b(b<a)\),求它们最大公约数的步骤如下:用\(b\)除\(a\),即\(a/b=q-..r\),得\(a…
一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ax+by=gcd(a,b)$. 通俗的说就是:如果$ax+by=c$有解,那么$c\%gcd(a,b)=0$ 扩展欧几里得算法就是来求解$ax+by=c$这个方程的(判断有无解仅需使用欧几里得算法即可). 我们不妨从递归到底的情况来入手. 当$b==0$时,显然有: $\begin{cases}x…
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理).扩展欧几里德常用在求解模线性方程及方程组中. ①:裴蜀定理: 裴蜀定理\((Bezouts identity)\)是代数几何中一个定理,其内容是若设a,b是整数,则存在整数x,y,使得ax+by=gcd(a,b),(a,b)代表最大公因数,则设a,b是不全为零的整数,则存在整数x,y,使…
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义就是对欧几里得算法的扩展. 切入正题: 首先我们来看一个问题: 求整数x, y使得ax + by = 1, 如果gcd(a, b) != 1, 我们很容易发现原方程是无解的.则方程ax + by = 1有正整数对解(x, y)的必要条件是gcd(a, b) = 1,即a, b 互质. 此时正整数对解…
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a mod b) (其中a mod b != 0)  或  b (其中a mod b == 0) 证明: 后半部分呢...是废话,于是只要证明前半部分即可. 不妨设g = gcd(a, b),于是有 a = g * A, b = g * B 且 (A, B) = 1 故gcd(b, a mod b) =…
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大公约数 引理:gcd(a,b)=gcd(b,a%b) 证明: 设 r=a%b , c=gcd(a,b) 则 a=xc , b=yc , 其中x , y互质…
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1=x+mt; L2=y+nt; 可知当两人相遇: L1-L2=k*l; 即 :(m-n)t-(y-x)=kL 根据整除取余的方法:[ a/b=c...d --> a-d=c*b;] 可得到:(m-n)t mod l=y-x; 得到线性同余方程 此方程有解当且仅当 y-x 能被 m-n 和l的最大公约数…
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by=gcd(a,b)\)的最小正整数解.根据数论的相关知识,一定存在一组解\(x,y\)使得\(ax+by=gcd(a,b)\).那就来谈谈具体如何来求解吧. 根据辗转相除法的内容\(gcd(a,b)=gcd(b,a\%b)\)我们可以得到:\[ax_1+by_1=gcd(a,b)=gcd(b,a\%…