Pandas的loc,iloc与ix的用法及区别】的更多相关文章

1.先来谈一谈loc,loc这个方法就是你有啥我就用啥,你没有的我不用,pandas对象的index,columns有什么,pd.loc[index,column],index就是pd.index的其中的一个值或者是其中几个值组成的序列,或就是pd.index,column是pd.columns中的一个值或者其中几个值,或者就是pd.columns 来来上代码 1 >>>data 2 UserID MovieID Rating 3 1 2 257 2 4 0 3 251 2 5 3 2…
参考:Pandas中关于 loc \ iloc \ ix 用法的理解 相同点 使用形式都是 df.xxx[ para1 , para2 ] #xxx表示loc iloc ix#df表示一个DataFrame实例 含义是从data提取指定行列的值,其中哪几行用para1声明,哪几列用para2声明,para1与para2的组织形式相同,一般用到的形式为以下4种: #para1取不同值时的行选取,para2取这样值时则为相应的列选取 : 所有行 0:2 第1.2行,下标为0.1 7:9 第8.9行,…
先看代码: In [46]: import pandas as pd In [47]: data = [[1,2,3],[4,5,6]] In [48]: index = [0,1] In [49]: columns=['a','b','c'] In [50]: df = pd.DataFrame(data=data, index=index, columns=columns) In [51]: df Out[51]: a b c 0 1 2 3 1 4 5 6 1. loc--通过行标签索引行…
转自:https://blog.csdn.net/qq_21840201/article/details/80725433 ### 随机生DataFrame 类型数据import pandas as pdimport numpy as npframe = pd.DataFrame(np.random.rand(4,4),index=list('abcd'),columns=list('ABCD'))frame  A B C Da 0.560094 0.352686 0.954100 0.9262…
In [114]: df Out[114]: A B C D 2018-06-30 0.318501 0.613145 0.485612 0.918663 2018-07-31 0.614796 0.711491 0.503203 0.170298 2018-08-31 0.530939 0.173830 0.264867 0.181273 2018-09-30 0.009428 0.622133 0.933908 0.813617 2018-10-31 0.126368 0.981736 0.…
参考: https://blog.csdn.net/xw_classmate/article/details/51333646 1. loc——通过行标签索引行数据 2. iloc——通过行号获取行数据 3. ix——结合前两种的混合索引…
-----------------------------------------------------------------------------------------------------------------------------------------------…
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
loc:通过行标签索引数据 iloc:通过行号索引行数据 ix:通过行标签或行号索引数据(基于loc和iloc的混合) 使用loc.iloc.ix索引第一行数据: loc: iloc: ix:…
使用pandas创建一个对象 In [1]: import pandas as pd In [2]: import numpy as np In [3]: df = pd.DataFrame(np.random.randn(6,4),index=pd.date_range(',periods=6),columns=list('ABCD')) In [4]: df Out[4]: A B C D 2018-01-01 -0.603510 0.269480 0.197354 -0.433003 20…