Note -「群论」学习笔记】的更多相关文章

目录 前置知识 群 置换 Burnside 引理与 Pólya 定理 概念引入 引例 轨道-稳定子(Orbit-Stabilizer)定理 证明 Burnside 引理 证明 Pólya 定理 证明 应用例 完整的 Pólya 定理及扩展 概念引入 Pólya × GF--完整的 Pólya 定理 前置知识   关系.映射等基本的东西就略啦. 群   对于集合 \(S\not=\varnothing\) 与作用于 \(S\) 的元素的二元运算 \(\cdot\) 构成的代数结构 \((S,\cd…
\(\mathcal{Definition}\)   线性规划(Linear Programming, LP)形式上是对如下问题的描述: \[\operatorname{maximize}~~~~z=\sum_{i=1}^nc_ix_i\\\operatorname{s.t.}\begin{cases} \sum_{j=1}^na_{ij}x_j\le b_i&i=1,2,\cdots,m\\ x_i\ge0&i=1,2,\cdots,n\end{cases} \] 其中,\(\opera…
「ExLucas」学习笔记 前置芝士 中国剩余定理 \(CRT\) \(Lucas\) 定理 \(ExGCD\) 亿点点数学知识 给龙蝶打波广告 Lucas 定理 \(C^m_n = C^{m\% mod}_{n\% mod} \times C^{\frac{m}{mod}}_{\frac{n}{mod}}\) 适用条件 给出的数据范围较大(无法用线性求出) 模数很烂的时候(会使阶乘中出现 \(0\)) \(mod\) 必须为质数 证明 证明很恶心,略. 模板 某谷P4720 #include…
0.前言 从这篇随笔开始记录Java虚拟机的内容,以前只是对Java的应用,聚焦的是业务,了解的只是语言层面,现在想深入学习一下. 对JVM的学习肯定不是看一遍书就能掌握的,在今后的学习和实践中如果有领会到的心得和踩过的坑,将会对这些文章进行更新. 另外,人脑更喜欢图胜过文字,有些流程先用文字码在那儿,后面有时间再画图. 1.「深入理解Java虚拟机」学习笔记(1) - Java语言发展趋势 2.「深入理解Java虚拟机」学习笔记(2)- JVM内存区域 3.[Java]「深入理解Java虚拟机…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「SP 6779」GSS7 「NOIP 2018」「洛谷 P5024」保卫王国 \(\mathcal{Introduction}\) \(\mathcal{Problem~1}\)   给定序列 \(\{a_n\}\),其中 \(a_i\in\mathbb Z\),求其最大子段和(不能为空).   很显然的 DP…
目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Tourists 「SDOI 2018」「洛谷 P4606」战略游戏 「BZOJ 4316」小C的独立集 「洛谷 P5236」「模板」静态仙人掌 「HNOI 2009」「洛谷 P4410」无归岛 圆方树的定义   圆方树是由一个无向图转化出的树形结构.转化方法为: 所有原图的点为"圆点". 对于每个点…
前置芝士 树连剖分及其思想,以及优化时间复杂度的原理. 讲个笑话这个东西其实和 Dsu(并查集)没什么关系. 算法本身 Dsu On Tree,一下简称 DOT,常用于解决子树间的信息合并问题. 其实本质上可以理解为高维树上 DP 的空间优化,也可以理解为暴力优化. 在这里我们再次明确一些定义: 重儿子 & 轻儿子:一个节点的儿子中子树最大的儿子称为该节点的重儿子,其余的儿子即为轻儿子.特殊的,如果子树最大的有多个,我们任取一个作为重儿子. 重边 & 轻边:连接一个节点与它的重儿子的边称为…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…