提纲: 机器学习为什么可能? 引入计算橙球概率问题 通过用Hoeffding's inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC的 将得到的理论应用到机器学习,证明实际机器是可以学习 机器学习的大多数情况下是让机器通过现有的训练集(D)的学习以获得预测未知数据的能力,即选择一个最佳的h做为学习结果,那么这种预测是可能的么?为什么在采样数据上得到的h可以认为适用于全局,也就是说其泛化性的本质是什么? 课程首先引入一个情景: 如果有一个装…
第三讲比较简单,参考:http://www.cnblogs.com/HappyAngel/p/3466527.html 第四讲很抽象,尤其是第四个视频,目的仍然是为了证明机器学习是可能的,不过这个博主解释的还算清楚:http://www.cnblogs.com/HappyAngel/p/3495804.html…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by…
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习等,这个好理解,离散的是分类,连续的是回归,到是结构化的学习接触的相对较少,以后有空可以关注下. 按照数据标记分可以分为: 监督: 非监督: 半监督: 增强学习: 下面这张ppt很好的总结了这点: 这是围绕标记yn的类型进行分类的, 监督和非监督很好理解,半监督和增强其实应用更加普遍,数据的标…
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance a…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep learning 的教程,虽然介绍的内容很浅,毕竟针对大部分初学者.不管学习到什么程度,能将课程跟一遍,或多或少会对知识体系的全貌有一个大致的理解.如果有时间的话,强烈建议跟完课程的同时完成各项作业.但值得注意的是,机器学习除了需要适当的数理基础之外,还是一门实践科学,只有通过不断的深入积累才能有更好…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题 简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况 回归…