0.支持度与置信度 <mahout实战>与<机器学习实战>一起该买的记录数占所有商品记录总数的比例——支持度(整体) 买了<mahout实战>与<机器学习实战>一起该买的记录数占所有购买<mahout实战>记录数的比例——置信度(局部) 支持度.置信度越大,商品出现一起购买的次数就越多,可信度就越大. 支持度:在所有的商品记录中有2%量是购买<mahout实战>与<机器学习实战> 置信度:买<mahout实战>…
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中,比方超市购物时,顾客购买记录经常隐含着非常多关联规则.比方购买圆珠笔的顾客中有65%也购买了笔记本.利用这些规则.商场人员能够非常好的规划商品摆放问题: 为叙述方便.设R= { I1,I2 ......Im} 是一组物品集…
五.移动平均 多个连续周期的时间序列数据平均值(按相同时间间隔得到的观察值,如每小时一次或每天一次)称为移动平均.之所以称之为移动,是因为随着新的时间序列数据的到来,要不断重新计算这个平均值,由于会删除最早的值同时增加最新的值,这个平均值会相应地“移动”. 例子: java代码: MR方案: 方案1:对于各个规约器键,在RAM种对时间序列数据排序,这个方法存在一个问题:如果没有足够的RAm来完成规约器的排序操作,这种方法就不可行. 方案2:让MRF完成时间序列数据的排序(MR框架的主要特性之一就…
购物篮分析是一个很经典的数据挖掘案例,运用到了Apriori算法.下面从网上下载的一超市某月份的数据库,利用Apriori算法进行管理分析.例子使用Python+MongoDB 处理过程1 数据建模(将Excel中的数据写入到MongoDB数据库), 2 从数据库中读取数据进行分析. Excel文件http://download.csdn.net/detail/artscrafts/6805689 案例配置文件 setting.py data_source = 'supermarket.xls'…
提到数据挖掘,我们的第一个反应是之前的啤酒和尿布的故事听说过,这个故事是一个典型的数据挖掘关联规则.篮分析的传统线性回归之间的主要差别的差别,对于离散数据的相关性分析: 常见的关联规则: 关联规则:牛奶=>卵子[支撑=2%,置信度=60%] 支持度:分析中的所有事务的2%同一时候购买了牛奶和鸡蛋,需设定域值,来限定规则的产生. 置信度:购买了牛奶的筒子有60%也购买了鸡蛋,需设定域值,来限定规则的产生. 最小支持度阈值和最小置信度阈值:由挖掘者或领域专家设定. 与关联分析相关的专业术语包含: 项…
博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 1.背景 昨天在看论坛帖子时候(帖子),看到一个关于SKU组合的问题,有很多M大佬都给出了处理方案,于是想用dax也写一个. 注: 原贴有dax的写法,这里主要说明下GENERATE之笛卡尔积.排列.组合处理过程. 上效果图 左起依次表名:data.笛卡尔积.排列.组合 2.问题 1.大前提是使我们要使用data的数据做购物篮分析分组: 2.在问题1已的基础上,笛卡尔积表(5*5)存在类似黄色区域问题,SKU两两相同,…
关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书<啤酒与尿布>,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理.我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念: TID Items T1 {牛奶,面包} T2 {面包,尿布,啤酒,鸡蛋} T3 {牛奶,尿布,啤酒,可乐} T4 {面包,牛奶,尿布,啤酒} T5 {面包,…
一:介绍 1.购物篮的定义 2.适用场景 3.相关概念 4.步骤 5.编程实现 6.步骤 二:程序 1.程序 package com.ibeifeng.senior.mba.association import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} import scala.collectio…
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association analysis)的方法,这种方法,可以从下表可以提取出,{尿布}->牛奶. 两个关键问题:1大型数据计算量很大.2发现的某种模式可能是虚假,偶然发生的. 2问题定义 把数据可以转换为如下表的二元表示,非二元不在本文讨论范围 项集 项集的支持度计数: 关联规则: 我们要发现,满足最小支持度与最小置信度…
转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书<啤酒与尿布>,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理.我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念: TID Items T1 {牛奶,面包…
一.频繁项集 若I是一个项集,I的支持度指包含I的购物篮数目,若I的支持度>=S,则称I是频繁项集.其中,S是支持度阈值. 1.应用 "尿布和啤酒" 关联概念:寻找多篇文章中共同的词汇集合.项->词,购物篮->文档 文档抄袭:寻找多个购物篮中共同出现的项对,同一个项对出现在越多的购物篮中,其相似度越高.项->文档,购物篮->句子 2.关联规则 I->j 如果I中所有项出现在某个购物篮的话,那么j"有可能"也出现在这一购物篮中. I…
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\\tools/lib/data/contact-lenses.arff"); ArffLoader loader = new ArffLoader(); loader.setFile(file); Instances m_instances = loader.getDataSet(); Discre…
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中的关联规则分析算法的一个延伸,为关联规则分析算法所形成的种类进行了更细粒度的挖掘,挖掘出不同种类内部的事例间的顺序原则,进而用以引导用户进行消费. 应用场景介绍 Microsoft顺序分析和聚类分析算法,根据…
二.Apriori算法 上文说到,大多数关联规则挖掘算法通常采用的策略是分解为两步: 频繁项集产生,其目标是发现满足具有最小支持度阈值的所有项集,称为频繁项集(frequent itemset). 规则产生,其目标是从上一步得到的频繁项集中提取高置信度的规则,称为强规则(strong rule).通常频繁项集的产生所需的计算远大于规则产生的计算花销. 我们发现频繁项集的一个原始方法是确定格结构中每个候选项集的支持度.但是工作量比较大.另外有几种方法可以降低产生频繁项集的计算复杂度. 减少候选项集…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出现在一块的物品的集合. 关联规则(associational rules): 暗示两种物品之间可能存在很强的关系. 相关术语 关联分析(关联规则学习): 从大规模数据集中寻找物品间的隐含关系被称作 关联分析(associati analysis) 或者 关联规则学习(association rule…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力.今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多. FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高.我们还是以上一篇中用的数据集为例: TID Items T1 {牛奶,面包} T2…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with ALS-WR (三),这个写了三篇,基本都是写QR分解,然后矩阵进过处理得到U或者M的过程,但是还是没有讲出个所以然来.mahout官网上说其是根据这篇文献得来的Large-scale Parallel Collaborative Filtering for the Netflix Prize,本来我是想…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with ALS-WR这个算法中的那个QR分析,真心是太复杂了.以至于国庆后面三天基本都是在郁闷中过来的,想着自己的矩阵学的是有多差呀...后来算法验证弄懂之后才发觉,尼玛,java太坑爹了吧,矩阵求个逆,有那么复杂么!!! 下面来开始验证:首先应该获得了两个变量分别是Ai和Vi,如果这两个变量不知道是啥东西,可…
由于种种原因(看这一章间隔的时间太长,弄不清动态规划.分治.递归是什么关系),导致这章内容看了三遍才基本看懂动态规划是什么.动态规划适合解决可分阶段的组合优化问题,但它又不同于贪心算法,动态规划所解决的问题的各个阶段是相互关联的,一个阶段的选择会影响其它阶段的选择.动态规划有两个优点:一是可以排除一些解,另一个是可以帮助我们系统化的解决问题,使问题变得清晰. 下面就说一下我对动态规划.分治.递归这三者的理解.分治算法是将原问题分解成两个较小的问题,而动态规划是将问题分成不同的阶段(步骤),当然,…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算法的并行主要就应该是ParallelALSFactorizationJob这里的并行了,下图是这个Job的大部分操作: 这里分析并行就是看每个job任务是否可以出现多个map或者reduce即可. (1)首先分析前面三个itemRatings,对应的输入是原始文件,如果原始文件很大的话,那么这个任务…
基于FP-Tree的关联规则FP-Growth推荐算法Java实现 package edu.test.ch8; import java.util.ArrayList; import java.util.List; public class Item implements Comparable { private String value; private Item preItem; // 前继节点Item private List<Item> nextItem = new ArrayList&…
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Array} oldList 原始列表 * @param {Array} newList 新列表 * @param {String} key 键名称 * @return {Object} {children: [], moves: [] } * children 是源列表 根据 新列表返回 移动的新数据,比…
非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法. 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术. 题外话: 并博客一直有打算写一系列文章通俗的密码学,昨天给站点上https, 因其中使用了RSA算法,就查了一下,发现现在网上介绍RSA算法的文章…
一.计算模型 1.1 定义: 我们在思考和处理算法的时候是机器无关.实现语言无关的.所有的算法运行在一种“抽象的机器”之上,这就是计算模型. 1.2 种类 图灵机是最有名的计算模型,本课使用更简单更合适的RAM计算模型. 1.3 RAM(Random Access Machine)模型 RAM模型的基本构成如下: RAM计算模型有如下特点: 一个简单操作花费一步:键值比较.加减.内存访问 没有操作可以被分解:循环.子程序 内存:访存是一个简单操作.无限制的内存 二.算法设计 2.1 算法问题规约…
第1章 绪论 1.1 什么是算法 1.2 算法问题求解基础 1.2.1 理解问题 1.2.2 了解计算设备的性能 1.2.3 在精确解法和近似解法之间做出选择 1.2.4 算法的设计技术 1.2.5 确定适当的数据结构 1.2.6 算法的描述 1.2.7 算法的正确性证明 1.2.8 算法的分析 1.2.9 为算法写代码 1.3 重要的问题类型 1.3.1 排序 1.3.2 查找 1.3.3 字符串处理 1.3.4 图问题 1.3.5 组合问题 1.3.6 几何问题 1.3.7 数值问题 1.4…