Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Chi-square test Random sample or not / Good or bad $$H_0: \text{Good model}$$ $$H_A: \text{Not good model}$$ Based on the expected p…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Dependent Variables (paired samples) SD of the difference is $$\sqrt{\sigma_x^2+\sigma_y^2-2\cdot r\cdot\sigma_x\cdot\sigma_y}$$ whe…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary One-sample $t$ test Test for a population mean (unknown SD); sample size $n$. That is, known sample mean and SD but unknown populati…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Test of Hypotheses $$\text{Null}: H_0$$ $$\text{Alternative}: H_A$$ Assuming the null is true, the chance of getting data like the d…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Estimating population means and percents Sampling assumptions: Simple Random Sample (SRS) Large enough so that the probability histo…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL In the following problems you will be asked to choose one of the four options (A)-(D). The options are sta…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL PROBLEM 1 A box contains 8 dark chocolates, 8 milk chocolates, and 8 white chocolates. (It’s amazing how t…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Zeros and Ones: Sum of a sample with replacement $S$ is the number of successes: $n$ independent trials, chance of success on a sing…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Law of Large Numbers As the number of trials increases, the chance that the proportion of successes is in the range $$p\pm\text{a fi…