三维高斯模型 opencv实现】的更多相关文章

OnProbabilityModel() { int i; for(int x=0;x<workImg->height;x++) { for(int y=0;y<workImg->width;y++) { //double cur[3]; CvMat* cur=cvCreateMat(3,1,CV_32F); for(i=0;i<3;i++){ double tt=((uchar*)(workImg->imageData+x*workImg->widthStep)…
#include "stdio.h" #include "string.h" #include "iostream" #include "opencv/cv.h" #include "opencv/cxcore.h" #include "opencv/cvaux.h" #include "opencv/highgui.h" #include "opencv/…
/* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include"cv.h" using namespace cv;//InputArray 等的定义在cv里面 namespace ourGaussmix { class BackgroundSubtractor: public cv::Algorithm { public: virtual ~Backgr…
OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGFG_MOG_BACKGROUND_THRESHOLD 0.7 //高斯分布权重之和阈值 #define CV_BGFG_MOG_STD_THRESHOLD 2.5 //λ=2.5(99%) #define CV_BGFG_MOG_WINDOW_SIZE 200 //学习率α=1/win_size #…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.如果加上他们的改进版,那就是很…
转自:http://blog.csdn.net/zouxy09/article/details/9622401 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion Competition).运动模版(运动历史图像).时间熵……等等.如果加上他们的改进版,那就是很大的一个家族了. 对于上…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-means大家都不会陌生,非常经典的一个聚类算法,已经50多年了,关于clustering推荐一篇不错的survey: Data clustering: 50 years beyond K-means.k-means表达的思想非常经典,就是对于复杂问题分解成两步不停的迭代进行逼近,并且每一步相对于前一步…
作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文是曲线拟合与分布拟合系列的一部分,主要总结混合高斯模型(Gaussian Mixture Model,GMM),GMM主要基于EM算法(前文已经推导),本文主要包括: 1)GMM背景介绍: 2)GMM理论推导: 3)GMM代码实现: 内容多有借鉴他人,最后一并给出链接. 一.GMM背景…
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值…