题意:给n个数,求满足一下条件的三元组(a,b,c)数量:a,b,c两两互质或者a,b,c两两不互质. 解法:这道题非常巧妙地运用补集转化和容斥原理.首先我们令这n个数为n个点,然后两两之间连边如果是互质连黑色不互质连红色,那么这个图就会变成完全图.那么题目就是要求我们计算这个完全图的同色三角形数量.观察发现同色三角形数量非常难求但是异色三角形数量好求,因为每个异色三角形对应三个点必定有两个点是连接两条异色边的.并且这种关系是一一对应的,那么我们就可以对于每个点求出连接该点的异色边对数,就可以求…