原文地址:https://www.jianshu.com/p/7a049ae73f56 梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\theta{J(\theta)}}\) 一.三种梯度下降优化框架 这三种梯度下降优化框架的区别在于每次更新模型参数时使用不同的样本数. (一)Batch Gradient Descent 批/全量梯度下降每次更新模型参数时使用全部的训练样本. \({\theta\leftarrow\theta-\eta…
梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\theta{J(\theta)}}\) 三种梯度下降优化框架 这三种梯度下降优化框架的区别在于每次更新模型参数时使用不同的样本数. Batch Gradient Descent 批/全量梯度下降每次更新模型参数时使用全部的训练样本. \({\theta\leftarrow\theta-\eta\cdot\frac{1}{N}\sum_{i=1}^{N}\nabla_\theta{J({\t…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本. 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本.我们每次更新都利用一个batch的数据,而非整个训练集.即: 其中,η为学习率,gt为x在t时刻的梯度. 这么做的好处在于: 当训…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent). 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中,对于参数的更新,需要计算所有的样本然后求平均,其计算得到的是一个标准梯度(这是一次迭代,我们其实需要做n次迭代直至其收敛).因而理论上来说一次更新的幅度是比较大的. SGD 与BGD相比,随机也就是说我每次随机采用样本中的一个例子来近似我所有的样本,用这一个随机采用的例子来计算梯度并用这个梯度来更新…
  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.   为了便于理解,这里我们将使用只含有一个特征的线性回归来展开.此时线性回归的假设函数为: \[ h_{\theta…
直接贴代码吧: 1 # -*- coding:UTF-8 -*- 2 from sklearn import datasets 3 from sklearn.cross_validation import train_test_split 4 from sklearn import preprocessing 5 from sklearn.linear_model import SGDClassifier 6 from sklearn import metrics 7 iris = datase…
阅读过程中的其他解释: Batch和miniBatch:(广义)离线和在线的不同…