np.asarray(a, dtype=None, order=None)】的更多相关文章

np.asarray(a, dtype=None, order=None) 参数a:可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组 参数dtype=None, order=None这两个都是可选参数 dtype:数据类型,默认的是自己从输入的数据自动获得. order:有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序…
1. np.asarray -- numpy 风格的类型转换 从已有多维数组创建新的多维数组,数据类型可重新设置 >> B = np.asarray(A, dtype='int32') 2. np.array() vs np.asarray 源码之前,了无秘密. 两者的区别和联系,铜通过查看源码,一目了然: def asarray(a, dtype=None, order=None): return array(a, dtype, copy=False, order=order) 两者主要的区…
array 和 asarray 都可以将 结构数据 转化为 ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 import numpy as np a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) """ 运行结果: [[1, 2, 3], […
Return an array of ones with the same shape and type as a given array. Parameters: a : array_like The shape and data-type of a define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. New…
numpy.zeros Return a new array of given shape and type, filled with zeros. Parameters: shape : int or sequence of ints Shape of the new array, e.g., (2, 3) or 2. dtype : data-type, optional The desired data-type for the array, e.g., numpy.int8. Defau…
Return a new array of given shape and type, filled with ones. Parameters: shape : int or sequence of ints Shape of the new array, e.g., (2, 3) or 2. dtype : data-type, optional The desired data-type for the array, e.g., numpy.int8. Default is numpy.f…
import cv2 import numpy as np import matplotlib.pyplot as plt img = 'test.jpg' img = cv2.imread(img) triangle = np.array([[0, 0], [1500, 800], [500, 400]]) abc = np.zeros((3, 2)) print(abc) abc[0,0] = 23 abc[0,1] = 300 abc[1,0] = 200 abc[1,1] = 500 a…
1. 数据源a是数组ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会.也就是说改变a的值,b不会. # 数据源a是列表时,两者没区别 a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) [[1, 2, 3], [4, 5, 6], 1] [[1 2 3] [4 5 6] [7 8 9]] [[1 2 3] [4 5 6] [7…
1.普通创建——np.array() 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. import numpy as np a1 = np.array([1, 2, 3]) print(a1) a2 = np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float) print(a2, a2.dtype, a2.shape) 运行结果: import numpy as np a1…