首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
fillna()函数
】的更多相关文章
fillna()函数
method: pad/ffill:用前一个非缺失值去填充该缺失值,用左边的非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值,用右边的非缺失值去填充该缺失值 None:指定一个值去替换缺失值(默认这种方式) limit参数:限制填充个数 axis参数:修改填充方向,默认为纵向填充,axis=1的时候,横向填充 import numpy as np df = pd.DataFrame( [[np.nan,2,np.nan,np…
fillna()
将下面注释掉 fillna() 函数:有一个inplace参数,默认为false,不会对原来dataframe中进行替换,为True时候会修改原来的.…
从Excel到Python:最常用的36个Pandas函数
本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两种,第一种是导入外部数据,第二 种是直接写入数据.Excel中的"文件"菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入. Python支持从多种类型的数据导入.在开始使用Python进行数据 导入前需要先导入pandas库,为了方便起见,我们也同时导入numpy…
关于Excel,你一定用的到的36个Python函数
从Excel到Python:最常用的36个Pandas函数关于Excel,你一定用的到的36个Python函数 本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据. Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入. Python支持从多种类型的数据导入.…
利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理方法为滤掉或者填充. 滤除缺失数据 对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如: 但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:…
【转载】使用pandas进行数据清洗
使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()¬null() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split()…
Python【8】-分析json文件
一.本节用到的基础知识 1.逐行读取文件 for line in open('E:\Demo\python\json.txt'): print line 2.解析json字符串 Python中有一些内置模块可以非常便捷地将json字符串转换为Python对象.比如json模块中的json.relaods()方法可以将json字符串解析为相应的字典. import json s='{ "a": "GoogleMaps\/RochesterNY", "c&qu…
Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 第9节 绘图和可视化 pandas 回顾 一.实验简介 学习数据分析的课程,需要同学们掌握好 Python 的语言基础,和对 Numpy 与 Matplotlib 等基本库有一些了解.同学们可以参考学习实验楼的 Python 语言基础教程与 Python 科学计算的课程. pandas 是后面我们…
pandas处理丢失数据-【老鱼学pandas】
假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd.date_range("2017-01-08", periods=6) data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C&…