导言 传统的神经网络都是基于固定的数据集进行训练学习的,一旦有新的,不同分布的数据进来,一般而言需要重新训练整个网络,这样费时费力,而且在实际应用场景中也不适用,所以增量学习应运而生. 增量学习主要旨在解决灾难性遗忘(Catastrophic-forgetting) 问题,本文将要介绍的<iCaRL: Incremental Classifier and Representation Learning>一文中对增量学习算法提出了如下三个要求: a) 当新的类别在不同时间出现,它都是可训练的 b…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容. 4. Model Generation 4.2 Hyperparameters optimization 4.2.1 Grid&Random Search 下图很直观地展示了网格搜索(grid search)和随机搜索(random search)的…
论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization论文作者:Wei Dong, Junsheng Wu, Yi Luo, Zongyuan Ge, Peng Wang论文来源:CVPR 2022论文地址:download论文代码:download 1 摘要 在本工作中,我们提出了一种简单而有效的自监督节点表示学习策略,通过直接最大化节点的…
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang论文来源:WWW 2020论文地址:download代码地址:download 前言 1.自监督学习(Self-supervised):属于无监督学习,其核心是自动为数据打标签(伪标签或其他角度的可信标签,包括图像的旋转.分块等等),通过让网络按照既定的规则,对数据打出正确的标签来更好地进行特征表示…
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang论文来源:WWW 2020论文地址:download代码地址:download 前言 1.自监督学习(Self-supervised):属于无监督学习,其核心是自动为数据打标签(伪标签或其他角度的可信标签,包括图像的旋转.分块等等),通过让网络按照既定的规则,对数据打出正确的标签来更好地进行特征表示…
Paper Information 论文标题:Contrastive Multi-View Representation Learning on Graphs论文作者:Kaveh Hassani .Amir Hosein Khasahmadi论文来源:2020, ICML论文地址:download论文代码:download Abstract 介绍了一种自监督的方法,通过对比图的结构视图来学习节点和图级别的表示.与视觉表示学习不同,对于图上的对比学习,将视图的数量增加到两个以上或对比多尺度编码并不…
论文信息 论文标题:Graph Representation Learning via Contrasting Cluster Assignments论文作者:Chun-Yang Zhang, Hong-Yu Yao, C. L. Philip Chen, Fellow, IEEE and Yue-…