洛谷P3246 [HNOI2016]序列 [莫队]】的更多相关文章

传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \(ans+=\sum_{i=l}^r \min\{a_i,a_{i+1} ,\dots ,a_r\}\). 那么这东西如何快速统计呢? 考虑使用前缀和. 首先,显然要用单调栈预处理每个点左边最靠右的第一个比它小的数的位置\(L_i\),和ST表处理出RMQ的位置. 预处理出对于每一个\(r\),\(…
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S_l = S_r\) 离散化之后直接上莫队就行了 对\(2, 5\)特判一下,因为2/5是10的因子,可能导致答案变大.直接维护\(0/5\)的出现次数就可以了 考场上一高兴写了三个Subtask.. #include <bits/stdc++.h> #define LL long long us…
题面传送门 这道题为什么我就没想出来呢/kk 对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n\log n)-\mathcal O(1)\) 维护,那么显然 \(\forall l'\in[l,x],r'\in[x,r],\min\limits_{t\in[l',r']}a_t=a_x\),产生的贡献为 \((r-x+1)(x-l+1)a_x\),于是我们只用计算 \([x+1,r],[l,…
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\([L_i + 1, i]\)对\([i, R_i]\)中的每个数都会有\(a[i]\)的贡献. 我们可以抽象成一个二维平面内的矩形加. 询问就是询问最下角为\((l, l)\),右上角为\((r, r)\)的矩形内的权值 也就是我们需要解决这么一个问题:两个操作, 矩形加矩形求和,而且前者都在后者…
传送门 题解 //minamoto #include<iostream> #include<cstdio> #define ll long long using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) <<],*p1=buf,*p2=buf; int read(){ #define num c…
[HNOI2016]序列(莫队,RMQ) 洛谷  bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_{i=l}^{r}minval(a[i:r])$ 考虑维护前缀和 先用单调栈扫出$w[i]$作为最小值的左边界右边界$l_i,r_i$ 然后回到上面的例子贡献就是$frontsum_{r}-frontsum_{rmqmin(l,r)}+w[rmqmin(l,r)]*(rmqmin(l,r)-l+1)$ 完…
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\(l,r\),求\(\sum\limits_{i=l}^r\sum\limits_{j=i}^r\min\{A_i,A_{i+1},...,A_j\}\). \(n,q\leq10^5\). \(Solution\) 莫队: 这种区间询问问题考虑一下莫队. 考虑移动右端点\(r\to r+1\)的时候…
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对于\([l,r]\)还是可能有很多最小值,数据不随机的话会被卡 预处理!!! 预处理\(l_i,\ r_i\)以i为最小值的范围,\(fl[i],\ fr[i]\)为从i开始 / 以i结尾的的前缀 / 后缀 最小值的和 \(fr[i] = (i - l_i + 1) * a_i + fr[i] -…
题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不同的数的个数. 题解: 第一问可以用主席树维护,但是第二问呢? 考虑离线处理询问,用莫队算法. 问题转化为加入一个数,删除一个数,统计数值在一个区间中的数的个数. 离散化后可以用树状数组维护,但是复杂度多个log,变成了\(O(n\sqrt{n}\log n)\). 考虑对数值也分块,先离散化,然后…
4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列.现在有q个询问,每个询问给定两个数l和r,1≤l≤r≤n,求a[l:r]的不同子序列的最小值之和.例如,给定序列5,2,4,1,3,询问给定的两个…