郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning for Data Privacy and Confidentiality, Vancouver, Canada. Abstract 我们解决了非i.i.d.情况下的联邦学习问题,在这种情况下,局部模型漂移,抑制了学习.基于与终身学习的类比,我们将灾难性遗忘的解决方案改用在联邦学习上.我们在损失函数中…
论文地址:MetricGAN+:用于语音增强的 MetricGAN 的改进版本 论文代码:https://github.com/JasonSWFu/MetricGAN 引用格式:Fu S W, Yu C, Hsieh T A, et al. MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement[J]. arXiv preprint arXiv:2104.03538, 2021. 摘要 用于训练语音增强模型的代价函数…
这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟欠账太多了). 量化 A. T. Suresh, Z. Sun, J. H. Ro, and F. Yu, "Correlated quantization for distributed mean estimation and optimization," arXiv:2203.0492…
目录 简介 参数模型 vs. 非参数模型 创新点 at the modeling level at the training procedure 模型结构 attention kernel Full Context Embeddings 训练策略 训练流程 参考资料 简介 参数模型 vs. 非参数模型 参数模型 training examples need to be slowly learnt by the model into its parameters. 非参数模型 allow nove…